Какой вид имеет вторичная структура белка. Строение и функции белков

П ЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ

Первичная структура белка несет информацию о его пространственной структуре.

1.Аминокислотные остатки в пептидной цепи белков чередуются не случайным образом, а распо-ложены в определенном порядке. Линейная после-довательность аминокислотных остатков в полипеп-тидной цепи называется первичной структурой белка.

2. Первичная структура каждого индивидуально-го белка закодирована в молекуле ДНК (участке, называемом геном) и реализуется в ходе транс-крипции (переписывания информации на мРНК) и трансляции (синтез пептидной цепи).

3. Каждый из 50 000 индивидуальных белков ор-ганизма человека имеет уникальную для данного индивидуального белка первичную структуру. Все молекулы индивидуального белка (например, аль-бумина) имеют одинаковое чередование амино-кислотных остатков, отличающее альбумин от лю-бого другого индивидуального белка.

4. Последовательность аминокислотных остат-ков в пептидной цепи можно рассматривать как
форму запи

си некоторой информации.

Эта информация диктует пространственную ук-ладку длинной линейной пептидной цепи в более компактную трехмерную структуру.

КОНФОРМАЦИЯ БЕЛКОВ

1. Линейные полипептидные цепи индивидуаль-ных белков за счет взаимодействия функциональ-ных групп аминокислот приобретают определен-ную пространственную трехмерную структуру, или конформацию. В глобулярных белках различают
два основных типа конформации пептидных цепей: вторичную и третичную структуры.

ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ

2. Вторичная структура белков - это пространст-венная структура, образующаяся в результате взаимодействий между функциональными груп- пами пептидного остова. При этом пептидная цепь может приобретать регулярные структуры двух типов: ос-спирали и р-структуры.

Рис. 1.2. Вторичная структура белка — а-спираль.

В ос-спирали водородные связи образуются между атомом кислорода карбоксильной группы и водородом амидного азота пептидного остова через 4 аминокислоты; боковые цепи аминокислотных остатков располагаются по периферии спирали, не участвуя в образовании водородных связей, фор-мирующих вторичную структуру (рис. 1.2).

Большие объемные остатки или остатки с одина-ковыми отталкивающимися зарядами препятству- ют формированию а-спирали.

Остаток пролина прерывает а-спираль благодаря его кольцевой структуре и невозможности образо-вания водородной связи из-за отсутствия водорода у атома азота в пептидной цепи.

B -Структура формируется между линейными областями одной полипептидной цепи, образуя при этом складки, или между разными полипеп-тидными цепями. Полипептидные цепи или их части могут формировать параллельные (N- и С-концы взаимодействующих пептидных цепей совпадают) или антипараллельные (N- и С-концы взаимодействующих пептидных цепей лежат в противоположных направлениях) р-структуры (рис. 1.3).

В белках также встречаются области с нерегу-лярной вторичной структурой, которые называ-ются беспорядочными клубками, хотя эти структу-ры не так сильно изменяются от одной молекулы белка к другой.

ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ

3. Третичная структура белка — это трехмерная пространственная структура, образующаяся за счет взаимодействий между радикалами аминокислот, которые могут располагаться на значительном рас-стоянии друг от друга в пептидной цепи.

Рис. 1.3. Антипараллельная (бета-структура.)


Гидрофобные радикалы аминокислот имеют тенденцию к объединению внутри глобулярной структуры белков с помощью так называемых гид- рофобных взаимодействий и межмолекулярных ван-дер-ваальсовых сил, образуя плотное гидро-фобное ядро. Гидрофильные ионизированные и неионизированные радикалы аминокислот в ос-новном расположены на поверхности белка и оп-ределяют его растворимость в воде.

Гидрофильные аминокислоты, оказавшиеся внут-ри гидрофобного ядра, могут взаимодействовать друг с другом с помощью ионных и водородных свя-зей (рис. 1.4).



Рис. 1.4. Типы связей, возникающие между радикалами аминокислот при формировании третичной структуры белка. 1 — ионная связь; 2 — водородная связь; 3 — гидрофобные взаимодействия; 4 — дисульфидная связь.



Рис. 1.5. Дисульфидные связи в структуре инсулина человека.

Ионные, водородные и гидрофобные связи отно-сятся к числу слабых: их энергия ненамного пре-вышает энергию теплового движения молекул при комнатной температуре.

Конформация белка поддерживается за счет воз-никновения множества таких слабых связей.

Конформационная лабильность белков — это спо-собность белков к небольшим изменениям кон-формации за счет разрыва одних и образования других слабых связей.

Третичная структура некоторых белков стабили-зирована дисульфидными связями, образующимися за счет взаимодействия SH-групп двух остатков цистеина.

Большинство внутриклеточных белков не имеет ковалентных дисульфидных связей. Их наличие характерно для секретируемых клеткой белков, на-пример дисульфидные связи имеются в молекулах инсулина, иммуноглобулинов.

Инсулин — белковый гормон, синтезирующийся в р-клетках поджелудочной железы. Секретируется клетками в ответ на повышение концентрации глю-козы в крови. В структуре инсулина имеются 2 ди-сульфидные связи, соединяющие 2 полипептидные А- и В-цепи, и 1 дисульфидная связь внутри А-цепи (рис. 1.5).

Особенности вторичной структуры белков ока-зывают влияние на характер межрадикальных вза-имодействий и третичную структуру.

4. Некоторый специфический порядок чередова-ния вторичных структур наблюдается во многих разных по структуре и функциям белках и носит название супервторичной структуры.

Такие упорядоченные структуры часто обозначают как структурные мотивы, которые имеют специфические названия: «а-спираль—поворот—а-спи-раль», «лейциновая застежка-молния», «цинковые пальцы», «структура Р-бочонка» и др.

По наличию а-спиралей и р-структур глобуляр-ные белки могут быть разделены на 4 категории:

1.В первую категорию включены белки, в кото-рых имеются только а-спирали, например миогло-бин и гемоглобин (рис. 1.6).

2. Во вторую категорию включены белки, в кото-рых имеются а-спирали и (3-структуры. При этом а- и (3-структуры часто образуют однотипные со-четания, встречающиеся в разных индивидуаль-ных белках.

Пример. Супервторичная структура типа Р-бочонка.



Фермент триозофосфатизомераза имеет супер-вторичную структуру типа Р-бочонка, где каждая (3-структура расположена внутри р-бочонка и свя-зана с а-спиральным участком полипептидной цепи, находящимся на поверхности молекулы (рис. 1.7, а).

Рис. 1.7. Супервторичная структура типа р-бочонка.

а — триозофосфатизомераза; б — домен пиру ватки назы.

Такая же супервторичная структура обнаружена в одном из доменов молекулы фермента пируваткиназы (рис. 1.7, б). Доменом называют часть молеку-лы, по структуре напоминающую самостоятель-ный глобулярный белок.

Еще один пример формирования супервторич-ной структуры, имеющей Р-структуры и ос-спира-ли. В одном из доменов лактатдегидрогеназы (ЛДГ) и фосфоглицераткиназы в центре располо-жены Р-структуры полипептидной цепи в виде скрученного листа и каждая р-структура связана с а-спиральным участком, расположенным на по-верхности молекулы (рис. 1.8).

Рис. 1.8. Вторичная структура, характерная для многих фер- ментов.

а -домен лактатдегидрогеназы; б— домен фосфоглицераткиназы.

3. В третью категорию включены белки, имею- щие только вторичную р-структуру. Такие структу-ры обнаружены в иммуноглобулинах, в ферменте супероксиддисмутазе (рис. 1.9).

Рис. 1.9. Вторичная структура константного домена им-муноглобулина (а)

и фермента супероксиддисмутазы (б).

4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное ко-личество регулярных вторичных структур. К таким белкам можно отнести небольшие богатые цисти-ном белки или металлопротеины.

В ДНК-связывающих белках имеются общие виды супервторичных структур: «ос-спираль—поворот— ос-спираль», «лейциновая застежка-молния», «цинко- вые пальцы». ДНК-связывающие белки содержат центр связывания, комплементарный участку ДНК с определенной нуклеотидной последовательностью. Эти белки участвуют в регуляции действия генов.

«а- Спираль—поворот—а-спираль»

Рис. 1.10. Связывание супервторичной

структуры «а-спи-раль—поворот—а-спираль»

в большой бороздке Д

Двуспиральная структура ДНК имеет 2 бороздки: большую и малую. Боль шая бороздка хорошо при-способлена для связывания белков, имеющих не-большие ос-спиральные участки.

В данный структурный мотив входят 2 ос-спирали: одна более короткая, другая более длинная, соеди-ненные поворотом полипептидной цепи (рис. 1.10).

Более короткая а-спираль располагается попе-рек бороздки ДНК, а более длинная а-спираль на-ходится в большой бороздке, образуя нековалент-ные специфические связи радикалов аминокислот с нуклеотидами ДНК.

Часто белки, имеющие такую структуру, образу-ют димеры, в результате олигомерный белок имеет 2 супервторичные структуры.

Они располагаются на определенном расстоянии друг от друга и выступают над поверхностью белка (рис. 1.11).

Две такие структуры могут связываться с ДНК в смежных областях больших бороздок

без значи-тельных изменений в структуре белков.

«Цинковый палец»

«Цинковый палец» — фрагмент белка, содержа-щий около 20 аминокислотных остатков (рис. 1.12).

Атом цинка связан с радикалами 4 аминокислот: 2 остатков цистеина и 2 — гистидина.

В некоторых случаях вместо остатков гистидина находятся остатки цистеина.

Рис. 1.12. Структура участка ДНК-связывающих

белков в форме «цинкового пальца».


Этот участок белка образует а-спираль, которая может специфично связываться с регуляторными участками большой бороздки ДНК.

Специфичность связывания индивидуального регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца».

«Лейциновая застежка-молния»

Взаимодействующие белки имеют а-спиральный участок, содержащий по крайней мере 4 ос-татка лейцина.

Лейциновые остатки расположены через 6 ами-нокислот один от другого.

Так как каждый виток а-спирали содержит 3,6-аминокислотного остатка, радикалы лейцина находятся на поверхности каждого второго витка.

Лейциновые остатки а-спирали одного белка могут взаимодействовать с лейциновыми остатка-ми другого белка (гидрофобные взаимодействия), соединяя их вместе (рис. 1.13).

Многие ДНК-связывающие белки взаимодейст-вуют с ДНК в виде олигомерных структур, где субъединицы связываются друг с другом «лейци-новыми застежками». Примером таких белков мо-гут служить гистоны.

Гистоны — ядерные белки, в состав которых вхо-дит большое количество положительно заряжен-ных аминокислот — аргинина и лизина (до 80%).

Молекулы гистонов объединяются в олигомер-ные комплексы, содержащие 8 мономеров с по-мощью «лейциновых застежек», несмотря на силь-ный положительный заряд этих молекул.

Резюме. Все молекулы индивидуального белка, имеющие идентичную первичную структуру, при-обретают в растворе одинаковую конформацию.

Таким образом, характер пространственной уклад-ки пептидной цепи определяется аминокислотным составом и чередованием аминокислотных остатков в цепи. Следовательно, конформация — такая же специфическая характеристика индивидуального белка, как и первичная структура.

Вторичная структура белка – это способ укладки полипептидной цепи в более компактную структуру, при которой происходит взаимодействие пептидных групп с образованием между ними водородных связей.

Формирование вторичной структуры вызвано стремлением пептида принять конформацию с наибольшим количеством связей между пептидными группами. Тип вторичной структуры зависит от устойчивости пептидной связи, подвижности связи между центральным атомом углерода и углеродом пептидной группы, размером аминокислотного радикала. Все указанное вкупе с аминокислотной последовательностью впоследствии приведет к строго определенной конфигурации белка.

Выделяют два возможных варианта вторичной структуры: в виде "каната" – α-спираль (α-структура), и в виде "гармошки" – β-складчатый слой (β-структура). В одном белке, как правило, одновременно присутствуют обе структуры, но в разном долевом соотношении. В глобулярных белках преобладает α-спираль, в фибриллярных – β-структура.

Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.

α-Спираль

Данная структура является правозакрученной спиралью, образуется при помощи водородных связей между пептидными группами 1-го и 4-го, 4-го и 7-го, 7-го и 10-го и так далее аминокислотных остатков.

Формированию спирали препятствуют пролин и гидроксипролин, которые из-за своей циклической структуры обусловливают "перелом" цепи, ее принудительный изгиб как, например, в коллагене .

Высота витка спирали составляет 0,54 нм и соответствует 3,6 аминокислотных остатков, 5 полных витков соответствуют 18 аминокислотам и занимают 2,7 нм.

β-Складчатый слой

В этом способе укладки белковая молекула лежит "змейкой", удаленные отрезки цепи оказываются поблизости друг от друга. В результате пептидные группы ранее удаленных аминокислот белковой цепи способны взаимодействовать при помощи водородных связей.

В организме роль белков чрезвычайно велика. При этом такое название вещество может носить только после того, как приобретает заранее заложенную структуру. До этого момента это полипептид, всего лишь аминокислотная цепь, которая не может выполнять заложенных функций. В общем виде пространственная структура белков (первичная, вторичная, третичная и доменная) - это объемное их строение. Причем наиболее важны для организма вторичные, третичные и доменные структуры.

Предпосылки для изучения белковой структуры

Среди методов изучения строения химических веществ особенную роль играет рентгеноструктурная кристаллография. Посредством нее можно получить информацию о последовательности атомов в молекулярных соединениях и об их пространственной организации. Попросту говоря, рентгеновский снимок можно сделать и для отдельной молекулы, что стало возможным в 30-е годы XX века.

Именно тогда исследователи обнаружили, что многие белки имеют не только линейную структуру, но и могут располагаться в спиралях, клубках и доменах. А в результате проведения массы научных экспериментов выяснилось, что вторичная структура белка - это конечная форма для структурных белков и промежуточная для ферментов и иммуноглобулинов. Это значит, что вещества, которая в конечном итоге имеют третичную или четвертичную структуру, на этапе своего "созревания" должны пройти и этап спиралеобразования, свойственный вторичной структуре.

Образование вторичной белковой структуры

Как только завершился синтез полипептида на рибосомах в шероховатой сети клеточной эндоплазмы, начинает образовываться вторичная структура белка. Сам полипептид представляет собой длинную молекулу, занимающую много места и неудобную для транспорта и выполнения заложенных функций. Потому с целью уменьшения ее размеров и придания ей особенных свойств развивается вторичная структура. Это происходит путем образования альфа-спиралей и бета-слоев. Таким образом получается белок вторичной структуры, который в дальнейшем либо превратится в третичную и четвертичную, либо будет использоваться в таком виде.

Организация вторичной структуры

Как показали многочисленные исследования, вторичная структура белка представляет собой либо альфа-спираль, либо бета-слой, либо чередование участков с данными элементами. Причем вторичная структура - это способ скручивания и спиралеобразования белковой молекулы. Это хаотичный процесс, который происходит за счет водородных связей, возникающих между полярными участками аминокислотных остатков в полипептиде.

Альфа-спираль вторичной структуры

Поскольку в биосинтезе полипептидов участвуют только L-аминокислоты, то образование вторичной структуры белка начинается с закручивания спирали по часовой стрелке (правым ходом). На каждый спиральный виток приходится строго 3,6 остатков аминокислот, а расстояние вдоль спиральной оси составляет 0,54 нм. Это общие свойства для вторичной структуры белка, которые не зависят от вида аминокислот, участвовавших в синтезе.

Определено, что не вся полипептидная цепь спирализуется полностью. В ее структуре присутствуют линейные участки. В частности, молекула белка пепсина спирализована лишь на 30%, лизоцима - на 42%, а гемоглобина - на 75%. Это значит, что вторичная структура белка - это не строго спираль, а комбинирование ее участков с линейными или слоистыми.

Бета-слой вторичной структуры

Вторым типом структурной организации вещества является бета-слой, который представляет собой две и более нити полипептида, соединенные водородной связью. Последняя возникает между свободными CO NH2 группами. Таким образом соединяются, в основном, структурные (мышечные) белки.

Структура белков данного типа такова: одна нить полипептида с обозначением концевых участков А-В параллельно располагается вдоль другой. Единственный нюанс в том, что вторая молекула располагается антипараллельно и обозначается как В-А. Так образуется бета-слой, который может состоять из сколько угодно большого количества полипептидных цепочек, соединенных множественными водородными связями.

Водородная связь

Вторичная структура белка - связь, основанная на множественных полярных взаимодействиях атомов с различными показателями электроотрицательности. Наибольшую способность к образованию такой связи имеют 4 элемента: фтор, кислород, азот и водород. В белках присутствуют все, кроме фтора. Потому водородная связь может образоваться и образуется, давая возможность соединять полипептидные цепи в бета-слои и в альфа-спирали.

Наиболее легко объяснить возникновение водородной связи на примере воды, представляющей собой диполь. Кислород несет сильный отрицательный заряд, а из-за высокой поляризации О-Н связи водород считается положительным. В таком состоянии молекулы присутствуют в некой среде. Причем многие из них соприкасаются и сталкиваются. Тогда кислород от первой молекулы воды притягивает водород от другой. И так по цепочке.

Аналогичные процессы протекают и в белках: электроотрицательный кислород пептидной связи притягивает к себе водород из любого участка другого аминокислотного остатка, образуя водородную связь. Это слабое полярное сопряжение, для разрыва которого требуется потратить порядка 6,3 кДж энергии.

Для сравнения, самая слабая ковалентная связь в белках требует 84 кДж энергии для того, чтобы ее разорвать. Самая сильная ковалентная связь потребует 8400 кДж. Однако количество водородных связей в молекуле белка настолько огромно, что их суммарная энергия позволяет молекуле существовать в агрессивных условиях и сохранять свое пространственное строение. Благодаря этому существуют белки. Структура белков данного типа обеспечивает прочность, которая нужна для функционирования мышц, костей и связок. Настолько огромно значение вторичной структуры белков для организма.

В организме роль белков чрезвычайно велика. При этом такое название вещество может носить только после того, как приобретает заранее заложенную структуру. До этого момента это полипептид, всего лишь аминокислотная цепь, которая не может выполнять заложенных функций. В общем виде пространственная структура белков (первичная, вторичная, третичная и доменная) - это объемное их строение. Причем наиболее важны для организма вторичные, третичные и доменные структуры.

Предпосылки для изучения белковой структуры

Среди методов изучения строения химических веществ особенную роль играет рентгеноструктурная кристаллография. Посредством нее можно получить информацию о последовательности атомов в молекулярных соединениях и об их пространственной организации. Попросту говоря, рентгеновский снимок можно сделать и для отдельной молекулы, что стало возможным в 30-е годы XX века.

Именно тогда исследователи обнаружили, что многие белки имеют не только линейную структуру, но и могут располагаться в спиралях, клубках и доменах. А в результате проведения массы научных экспериментов выяснилось, что вторичная структура белка - это конечная форма для структурных белков и промежуточная для ферментов и иммуноглобулинов. Это значит, что вещества, которая в конечном итоге имеют третичную или четвертичную структуру, на этапе своего "созревания" должны пройти и этап спиралеобразования, свойственный вторичной структуре.

Образование вторичной белковой структуры

Как только завершился синтез полипептида на рибосомах в шероховатой сети клеточной эндоплазмы, начинает образовываться вторичная структура белка. Сам полипептид представляет собой длинную молекулу, занимающую много места и неудобную для транспорта и выполнения заложенных функций. Потому с целью уменьшения ее размеров и придания ей особенных свойств развивается вторичная структура. Это происходит путем образования альфа-спиралей и бета-слоев. Таким образом получается белок вторичной структуры, который в дальнейшем либо превратится в третичную и четвертичную, либо будет использоваться в таком виде.

Организация вторичной структуры

Как показали многочисленные исследования, вторичная структура белка представляет собой либо альфа-спираль, либо бета-слой, либо чередование участков с данными элементами. Причем вторичная структура - это способ скручивания и спиралеобразования белковой молекулы. Это хаотичный процесс, который происходит за счет водородных связей, возникающих между полярными участками аминокислотных остатков в полипептиде.

Альфа-спираль вторичной структуры

Поскольку в биосинтезе полипептидов участвуют только L-аминокислоты, то образование вторичной структуры белка начинается с закручивания спирали по часовой стрелке (правым ходом). На каждый спиральный виток приходится строго 3,6 остатков аминокислот, а расстояние вдоль спиральной оси составляет 0,54 нм. Это общие свойства для вторичной структуры белка, которые не зависят от вида аминокислот, участвовавших в синтезе.

Определено, что не вся полипептидная цепь спирализуется полностью. В ее структуре присутствуют линейные участки. В частности, молекула белка пепсина спирализована лишь на 30%, лизоцима - на 42%, а гемоглобина - на 75%. Это значит, что вторичная структура белка - это не строго спираль, а комбинирование ее участков с линейными или слоистыми.

Бета-слой вторичной структуры

Вторым типом структурной организации вещества является бета-слой, который представляет собой две и более нити полипептида, соединенные водородной связью. Последняя возникает между свободными CO NH2 группами. Таким образом соединяются, в основном, структурные (мышечные) белки.

Структура белков данного типа такова: одна нить полипептида с обозначением концевых участков А-В параллельно располагается вдоль другой. Единственный нюанс в том, что вторая молекула располагается антипараллельно и обозначается как В-А. Так образуется бета-слой, который может состоять из сколько угодно большого количества полипептидных цепочек, соединенных множественными водородными связями.

Водородная связь

Вторичная структура белка - связь, основанная на множественных полярных взаимодействиях атомов с различными показателями электроотрицательности. Наибольшую способность к образованию такой связи имеют 4 элемента: фтор, кислород, азот и водород. В белках присутствуют все, кроме фтора. Потому водородная связь может образоваться и образуется, давая возможность соединять полипептидные цепи в бета-слои и в альфа-спирали.

Наиболее легко объяснить возникновение водородной связи на примере воды, представляющей собой диполь. Кислород несет сильный отрицательный заряд, а из-за высокой поляризации О-Н связи водород считается положительным. В таком состоянии молекулы присутствуют в некой среде. Причем многие из них соприкасаются и сталкиваются. Тогда кислород от первой молекулы воды притягивает водород от другой. И так по цепочке.

Аналогичные процессы протекают и в белках: электроотрицательный кислород пептидной связи притягивает к себе водород из любого участка другого аминокислотного остатка, образуя водородную связь. Это слабое полярное сопряжение, для разрыва которого требуется потратить порядка 6,3 кДж энергии.

Для сравнения, самая слабая ковалентная связь в белках требует 84 кДж энергии для того, чтобы ее разорвать. Самая сильная ковалентная связь потребует 8400 кДж. Однако количество водородных связей в молекуле белка настолько огромно, что их суммарная энергия позволяет молекуле существовать в агрессивных условиях и сохранять свое пространственное строение. Благодаря этому существуют белки. Структура белков данного типа обеспечивает прочность, которая нужна для функционирования мышц, костей и связок. Настолько огромно значение вторичной структуры белков для организма.

§ 8. ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Первичная структура

Под первичной структурой белка понимают количество и порядок чередования аминокислотных остатков, соединенных друг с другом пептидными связями, в полипептидной цепи.

Полипептидная цепь на одном конце содержит свободную, не участвующую в образовании пептидной связи, NH 2 -группу, этот участок обозначается как N–конец . На противоположной стороне располагается свободная, не участвующая в образовании пептидной связи, НООС-группа, это – С-конец . За начало цепи принимается N-конец, именно с него начинается нумерация аминокислотных остатков:

Аминокислотную последовательность инсулина установил Ф. Сэнгер (Кембриджский университет). Этот белок состоит из двух полипептидных цепей. Одна цепь состоит из 21 аминокислотного остатка, другая цепь – из 30. Цепи связаны двумя дисульфидными мостиками (рис.6).

Рис. 6. Первичная структура инсулина человека

На расшифровку этой структуры было затрачено 10 лет (1944 – 1954 гг.). В настоящее время первичная структура определена у многих белков, процесс ее определения автоматизирован и не представляет собой серьезную проблему для исследователей.

Информация о первичной структуре каждого белка закодирована в гене (участке молекулы ДНК) и реализуется в ходе транскрипции (переписывании информации на мРНК) и трансляции (синтеза полипептидной цепи). В связи с этим можно установить первичную структуру белка также по известной структуре соответствующего гена.

По первичной структуре гомологичных белков можно судить о таксономическом родстве видов. К гомологичным белкам относятся те белки, которые у разных видов выполняют одинаковые функции. Такие белки имеют сходные аминокислотные последовательности. Например, белок цитохром С у большинства видов имеет относительную молекулярную массу около 12500 и содержит около 100 аминокислотных остатков. Различия в первичной структуре цитохрома С двух видов пропорциональны филогенетическому различию между данными видами. Так цитохромы С лошади и дрожжей отличаются по 48 аминокислотным остаткам, курицы и утки – по двум, цитохромы же курицы и индейки идентичны.

Вторичная структура

Вторичная структура белка формируется вследствие образования водородных связей между пептидными группами. Различают два типа вторичной структуры: α-спираль и β-структура (или складчатый слой) . В белках могут присутствовать также участки полипептидной цепи, не образующие вторичную структуру.

α-Спираль по форме напоминает пружину. При формировании α-спирали атом кислорода каждой пептидной группы образует водородную связь с атомом водорода четвертой по ходу цепи NH-группы:

Каждый виток спирали связан со следующим витком спирали несколькими водородными связями, что придает структуре значительную прочность. α-Спираль обладает следующими характеристиками: диаметр спирали 0,5 нм, шаг спирали – 0,54 нм, на один виток спирали приходится 3,6 аминокислотных остатка (рис. 7).

Рис. 7. Модель a-спирали, отражающая ее количественные характеристики

Боковые радикалы аминокислот направлены наружу от -спирали (рис. 8).

Рис. 8. Модель -спирали, отражающая пространственное расположение боковых радикалов

Из природных L-аминокислот может быть построена как правая, так и левая -спираль. Для большинства природных белков характерна правая спираль. Из D-аминокислот также можно построить как левую, так и правую спираль. Полипептидная же цепь, состоящая из смеси D-и L-аминокислотных остатков, не способна образовывать спираль.

Некоторые аминокислотные остатки препятствуют образованию α-спирали. Например, если в цепи подряд расположено несколько положительно или отрицательно заряженных аминокислотных остатков, такой участок не примет α-спиральной структуры из-за взаимного отталкивания одноименно заряженных радикалов. Затрудняют образование -спирали радикалы аминокислотных остатков, имеющих большие размеры. Препятствием для образования α-спирали, является также наличие в полипептидной цепи остатков пролина (рис. 9). В остатке пролина при атоме азота, образующем пептидную связь с другой аминокислотой, нет атома водорода.

Рис. 9. Остаток пролина препятствует образованию -спирали

Поэтому остаток пролина, входящий в состав полипептидной цепи, не способен образовывать внутрицепочечную водородную связь. Кроме того, атом азота в пролине входит в состав жесткого кольца, что делает невозможным вращение вокруг связи N – C и образование спирали.

Кроме α-спирали описаны и другие типы спиралей. Однако они встречаются редко, в основном на коротких участках.

Образование водородных связей между пептидными группами соседних полипептидных фрагментов цепей приводит к формированию β-структуры, или складчатого слоя:

В отличие от α-спирали складчатый слой имеет зигзагообразную форму, похожую на гармошку (рис. 10).

Рис. 10. β-Структура белка

Различают параллельные и антипараллельные складчатые слои. Параллельные β-структуры образуются между участками полипептидной цепи, направления которых совпадают:

Антипаралельные β-структуры образуются между противоположно направленными участками полипептидной цепи:


β-Структуры могут формироваться более чем между двумя полипептидными цепями:


В составе одних белков вторичная структура может быть представлена только α-спиралью, в других – только β-структурами (параллельными, или антипараллельными, или и теми, и другими), в третьих наряду с α-спирализованными участками могут присутствовать и β-структуры.

Третичная структура

У многих белков вторичноорганизованные структуры (α-спирали, -структуры) свернуты определенным образом в компактную глобулу. Пространственная организация глобулярных белков носит название третичной структуры. Таким образом, третичная структура характеризует трехмерное расположение участков полипептидной цепи в пространстве. В формировании третичной структуры принимают участие ионные и водородные связи, гидрофобные взаимодействия, ван-дер-ваальсовы силы. Стабилизируют третичную структуру дисульфидные мостики.

Третичная структура белков определяется их аминокислотной последовательностью. При ее формировании связи могут возникать между аминокислотами, расположенными в полипептидной цепи на значительном расстоянии. У растворимых белков полярные радикалы аминокислот, как правило, оказываются на поверхности белковых молекул и реже – внутри молекулы, гидрофобные радикалы оказываются компактно упакованными внутри глобулы, образуя гидрофобные области.

В настоящее время третичная структура многих белков установлена. Рассмотрим два примера.

Миоглобин

Миоглобин – кислород-связывающий белок с относительной массой 16700. Его функция – запасание кислорода в мышцах. В его молекуле имеется одна полипептидная цепь, состоящая из 153 аминокислотных остатков, и гемогруппа, играющая важную роль в связывании кислорода.

Пространственная организация миоглобина установлена благодаря работам Джона Кендрью и его коллег (рис. 11). В молекуле этого белка присутствуют 8 α-спиральных участков, на их долю приходится 80 % всех аминокислотных остатков. Молекула миоглобина очень компактна, внутри нее может уместиться всего четыре молекулы воды, почти все полярные радикалы аминокислот расположены на внешней поверхности молекулы, большая часть гидрофобных радикалов расположена внутри молекулы, вблизи поверхности находится гем – небелковая группа, ответственная за связывание кислорода.

Рис.11. Третичная структура миоглобина

Рибонуклеаза

Рибонуклеаза – глобулярный белок. Она секретируется клетками поджелудочной железы, это – фермент, катализирующий расщепление РНК. В отличие от миоглобина, в молекуле рибонуклеазы имеется очень мало α-спиральных участков и достаточно большое число сегментов, находящихся в β-конформации. Прочность третичной структуре белка придают 4 дисульфидные связи.

Четвертичная структура

Многие белки состоят из нескольких, двух или более, белковых субъединиц, или молекул, обладающих определенной вторичной и третичной структурами, удерживаемых вместе при помощи водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил. Такая организация белковых молекул носит название четвертичной структуры , а сами белки называют олигомерными . Отдельная субъединица, или белковая молекула, в составе олигомерного белка называется протомером .

Число протомеров в олигомерных белках может варьировать в широких пределах. Например, креатинкиназа состоит из 2 протомеров, гемоглобин – из 4 протомеров, РНК-полимераза E.coli – фермент, ответственный за синтез РНК, – из 5 протомеров, пируватдегидрогеназный комплекс – из 72 протомеров. Если белок состоит из двух протомеров, его называют димером, четырех – тетрамером, шести – гексамером (рис. 12). Чаще в молекуле олигомерного белка содержится 2 или 4 протомера. В состав олигомерного белка могут входить одинаковые или различные протомеры. Если в состав белка входят два идентичных протомера, то это – гомодимер , если разные – гетеродимер .


Рис. 12. Олигомерные белки

Рассмотрим организацию молекулы гемоглобина. Основная функция гемоглобина заключается в транспорте кислорода из легких в ткани и углекислого газа в обратном направлении. Его молекула (рис. 13) состоит из четырех полипептидных цепей двух различных типов – двух α-цепей и двух β-цепей и гема. Гемоглобин является белком, родственным миоглобину. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны. Каждый протомер гемоглобина содержит, как и миоглобин, 8 α-спирализованных участков полипептидной цепи. При этом надо отметить, что в первичных структурах миоглобина и протомера гемоглобина идентичны только 24 аминокислотных остатка. Следовательно, белки, значительно отличающиеся по первичной структуре, могут иметь сходную пространственную организацию и выполнять сходные функции.

Рис. 13. Структура гемоглобина