Тема: Физиология бактерий. Физиология микроорганизмов кратко

Питание бактерий

Бактерии, как и все другие организмы, для существования и воспроизводства себе подобных нуждаются в постоянном обмене веществ с окружающей средой. Превращения веществ в клетке (метаболизм) представлены противоположными, но и взаимосвязанными процессами, направленными, во-первых, на распад сложных питательных веществ на более простые, это звено метаболизма называется катаболизмом, а, во-вторых, на превращения простых веществ в ходе реакций промежуточного обмена в более сложные низкомолекулярные соединения, из которых далее синтезируются полимерные макромолекулы. Это, второе, звено метаболизма называется анаболизмом.

Для осуществления процессов метаболизма питательные вещества проникают в бактериальную клетку извне через цитоплазматическую мембрану, при этом клеточная стенка не служит препятствием для прохождения ионов и мелких молекул. Мембранные белки - пермеазы или транслоказы - обладают ферментативными свойствами и помогают осуществлять транспорт веществ в клетку. Различают три механизма транспорта, два из них обеспечивают только передачу, но не накопление веществ в клетке.

Это простая или пассивная диффузия и облегченная диффузия. Простая диффузия не специфична, для нее имеет значение только величина молекул. Путем простой диффузии в клетку проникают чужеродные для нее вещества - яды, ингибиторы, лекарственные препараты. При облегченной диффузии в клетку проникают те молекулы, концентрация которых в цитоплазме ниже, чем в окружающей среде.

Этот процесс осуществляется благодаря субстрат-специфической пермеазе. Затрат энергии при этом не происходит. Третий механизм питания клетки - активный транспорт. Он тоже происходит с участием субстратных белков ферментов, но при этом затрачивается энергия, а проникшие в клетку вещества накапливаются в ней. Молекулы, проникшие в клетку путем активного транспорта через мембрану, претерпевают химические превращения, например фосфорилирование.

Выход продуктов метаболизма из бактериальной клетки в окружающую среду также осуществляется путем неконтролируемой диффузии или при участии транспортных систем - в тех случаях, когда в результате процессов брожения, неполного окисления или нарушений метаболизма вещества накапливаются в клетке в количествах, превышающих физиологическую норму.

Для роста и размножения бактерий, а следовательно и для их питания необходимы различные химические соединения, растворенные в воде. По количественному вкладу в построение клетки различают макро- и микроэлементы. К макроэлементам относят 10 элементов таблицы Менделеева: углерод, водород, кислород, азот, серу, калий, кальций, фосфор, магний, железо. Микроэлементы нужны бактериям в очень малых, следовых, количествах: они представлены марганцем, молибденом, цинком, медью, кобальтом, никелем, хлором, бромом и некоторыми другими металлами и неметаллами. Большинство из них содержится в виде примесей в макроэлементах или может попадать в питательные среды из стеклянной посуды, воды или воздуха. Некоторые бактерии могут обходиться и без микроэлементов.

По потребности в углероде бактерии делятся на две большие группы: автотрофы (или литотрофы) и гетеротрофы (или органотрофы).

Бактерии-автотрофы способны получать энергию путем окисления неорганических соединений. Они, как правило, используют СО2 как основной источник, содержащий углерод в наиболее окисленной форме. Поэтому при культивировании автотрофов необходимо обеспечить клетки углекислотой, так как концентрация СО2 в воздухе не превышает 0,03 % и ее поступление в среду за счет диффузии недостаточно для роста микроорганизмов. В питательные среды для культивирования автотрофов вносят карбонат кальция (СаСО3) или бикарбонат натрия (КаНСО3). Иногда через питательную среду продувают воздух, обогащенный 1-5 % СО2.

Бактерии-гетеротрофы получают углерод из органических соединений. В зависимости от индивидуальных особенностей микроорганизмов источником углерода могут быть разные органические соединения - спирты, углеводы, ароматические соединения, органические кислоты.

Для роста микроорганизмов также необходим азот, который входит в состав органических соединений или солей в разной степени восстановления. Это могут быть соли аммония, нитраты или отдельные аминокислоты. Для удовлетворения потребности бактерий в азоте используют также продукты неполного расщепления белков животного происхождения - гидролизаты, пептоны и сложные белковые смеси - нативную сыворотку животных, асцитическую жидкость и др.

Кроме углерода, азота и других химических элементов, многие бактерии нуждаются в факторах роста, к которым относятся витамины, основания нуклеиновых кислот и другие биологически активные вещества. По этому признаку микроорганизмы можно разделить на две группы: ауксотрофы, для которых в среде необходимо наличие одного или нескольких факторов роста, и прототрофы, они в факторах роста не нуждаются.

В среде обитания бактерий кроме биосинтетического должен находиться и энергетический материал. По способу получения энергии бактерии также принято делить на две группы: хемотрофы и фототрофы. Хемотрофы используют энергию окисления различных соединений. В зависимости от окисляемого субстрата среди хемотрофных организмов выделяют хемолитотрофы и хемоорганотрофы. Фототрофы для удовлетворения энергетических потребностей используют энергию света.

Питательные среды

В лабораторных или производственных условиях бактерии выращивают (культивируют) на средах, которые должны удовлетворять потребности бактерий в питательных веществах, иметь адекватное значение величины рН, изотоничность и быть стерильными, а по возможности и прозрачными. Специфичность большинства питательных сред определяют соединения углерода и азота, но так как конструктивные и энергетические процессы микроорганизмов разнообразны, неодинаковы и их потребности в питательных веществах.

Питательные среды принято делить на несколько групп: среды, которые отличаются по составу и происхождению, физическому состоянию (или консистенции) и функциональному (или целевому) назначению.

По происхождению среды бывают естественными (натуральными) и искусственными (синтетическими). К естественным средам относят те, в состав которых входят продукты растительного или животного происхождения. Они содержат все компоненты, необходимые для роста и развития бактерий, но имеют непостоянный химический состав, т. е. они нестабильны.

Поэтому такие питательные среды не пригодны для изучения метаболизма бактерий, а используются, в основном, для накопления биомассы, поддержания культур бактерий в жизнеспособном состоянии и для диагностических целей, например, для выделений чистых культур бактерий. К естественным средам относятся молоко, кровь и сыворотка крови, отвары и экстракты из природных субстратов, пептонная и мясная вода, мясопептонные бульон и агар, дрожжевые экстракты, картофельные и яичные среды.

Синтетические (искусственные) среды имеют определенный химический состав и точное количественное содержание питательных веществ. Их используют для изучения метаболизма бактерий, исследования физиологии и биохимии микроорганизмов. Примером синтетической среды могут служить среды Козера и Симмонса, используемые для изучения способности бактерий утилизировать цитраты. В состав этих сред, наряду с другими солями, входят цитрат натрия и индикатор.

В практике микробиологии, как правило, используются комбинированные питательные среды, в которых сочетаются естественные компоненты с неорганическими солями. Примерами таких сред являются агар Цейсслера, в состав которого входит МПА, кровь и сахар, среды Гисса, содержащие пептон, агар, один из сахаров и индикатор, среда Раппопорта, состоящая из желчного бульона, глюкозы и индикатора.

Среды можно по составу разделить также на простые и сложные. К простым относятся мясная и пептонная вода, мясо-пептонные бульон и агар. Добавление к таким средам одного или нескольких ингредиентов - углеводов, крови, сыворотки и других составляющих делают их сложными.

По физическому состоянию питательные среды могут быть жидкими, полужидкими, плотными или твердыми, сыпучими или сухими. Жидкие среды представлены, как правило, водными растворами необходимых для жизни веществ. Их используют для накопления биомассы, обогащения культур бактерий, изучения метаболизма. Полужидкие и плотные питательные среды получают из жидких, добавляя к ним агар или желатин. Концентрация агара для полужидких сред - 0,5-0,7 %, а для плотных - 1,5-2 %.

Полисахарид агар получают из некоторых видов морских водорослей, его высушивают и хранят в виде пластин или порошка. Бактерии не используют агар в качестве субстрата и поэтому состав плотной питательной среды зависит от состава жидкой среды, к которой добавлен агар. Агар плавится примерно при температуре 100 С и застывает при 40 С. Агаризированные среды разливают в пробирки или чашки Петри в расплавленном состоянии, а затем охлаждают. Для уплотнения сред иногда используют желатин, добавляя его к жидким средам в 10-20-ой % концентрации.

Применение желатина ограничено тем, что он разжижается протеолитическими ферментами бактерий и его применяют, в основном, в питательных средах для диагностических целей. Для уплотнения сред используют, кроме того, силикагель и каррагенан, получаемый из красных морских водорослей. Пластины геля, пропитанные питательной средой, используют для культивирования бактерий-автотрофов.

Сухие питательные среды представляют смеси составляющих питательных сред определенного состава. Перед использованием их растворяют в воде в соответствии с инструкцией, указанной на этикетке, устанавливают необходимое значение рН и стерилизуют. Применение сухих питательных сред облегчает работу по приготовлению сложных сред в лабораториях.

По целевому назначению питательные среды делят на несколько групп:
1) основные, или универсальные простые, среды, например, МПА, МПБ; на них могут расти многие виды неприхотливых микроорганизмов;
2) специальные, или сложные, среды, их используют для культивирования тех бактерий, которые не могут расти на основных простых средах; в состав специальных сред вводят, например, углеводы.

Среди сложных сред можно выделить избирательные (или элективные) среды. Они предназначены для выделения и культивирования определенного вида бактерий из материала, содержащего большое количество разных видов микроорганизмов. В сложном составе таких сред содержатся вещества, ингибирующие рост посторонней микрофлоры, но не влияющие на жизнедеятельность искомого вида бактерий. Такими веществами могут быть анилиновые красители, желчь, хлористый натрий в концентрации выше 1%.

Разновидность элективных - селективные питательные среды. В их состав входят не только вещества, подавляющие рост отдельных групп микроорганизмов, но и стимуляторы роста отдельных видов бактерий.

Питательные среды стерилизуют в автоклавах при разных режимах, которые зависят от состава среды или, если питательные среды содержат термолабильные компоненты, путем стерилизующей фильтрации.

Л.В. Тимощенко, М.В. Чубик


План лекции Химический состав бактерий Химический состав бактерий Клеточный метаболизм Клеточный метаболизм Конструктивный метаболизм Конструктивный метаболизм Типы питания бактерий Типы питания бактерий Mеханизмы проникновение веществ Mеханизмы проникновение веществ Ферменты микроорганизмов Ферменты микроорганизмов Типы дыхания бактерий Типы дыхания бактерий Рост и размножение бактерий Рост и размножение бактерий Питательные среды Питательные среды




Химический состав бактерий. Как и все живые существа, бактериальная клетка состоит из четырех основных элементов - азота, углерода, водорода, кислорода. Углерод составляет % сухого остатка клетки, кислород %, азот % и водород %. Эти органогены служат материалом, из которого построены все составные компоненты клетки: нуклеиновые кислоты, белки, липиды, углеводы, многочисленные ферментные системы и тому подобное.


Тонкие физико-химические исследования позволили установить, что в клетке насчитывается свыше 2,4 млн. многообразных белковых молекул 1850 видов Белок 55 % 2,4 млн. мол РНК20,5% 250 тыс. мол. ДНК 3,1 % 2 молекулы Липиды 9,1 % 22 млн. молекул Липополисахари ды 3,4 % 1,5 млн. молекул Пептидогликан 2,5 % 1 молекула


Клеточный метаболизм. Совокупность всех биохимических превращений в клетке называется метаболизмом. Он происходит за двумя основными направлениями. Первый обеспечивает синтез сложных клеточных соединений из более простых. Потому он получил название биосинтез, конструктивный метаболизм или анаболизм. Однако подавляющее большинство реакций синтеза и распада нуждаются в энергетическом обеспечении. Потому энергетический метаболизм или катаболизм представляет собой поток реакций, которые сопровождаются накоплением электрохимической энергии, что потом используется клеткой.


Конструктивный и энергетический метаболизм - тесно связанный между собой комплекс превращений, часто их пути совпадают, и одни и те же вещества используются для разных потребностей. В этом случае такие субстраты называются амфиболитами, а пути - амфиболичними.


Конструктивный метаболизм прокариотов. Для того, чтобы клетка могла существовать, должен происходить постоянный обмен веществ с окружающей средой. В клетку извне должен поступать пластичный материал, из которого она синтезирует все необходимые ей молекулы. В конструктивном метаболизме ведущая роль принадлежит соединениям углерода, из которого построены все живые организмы. В зависимости от того, какой углерод усваивают бактерии, они разделяются на две группы: автотрофы и гетеротрофы.


Автотрофы (autos - сам, trophe - питание) способен синтезировать все необходимые им органические соединения CO2 как единственного источника углерода. Гетеротрофы (heteros -другой) - микроорганизмы, источником углерода для которых являются органические соединения. Они способны потреблять любые простые и сложные углеродные соединения - сахара, аминокислоты, многоатомные спирты, парафин и др.






Дикие штаммы бактерий способны синтезировать все необходимые им вещества из ограниченного числа органических соединений, например, глюкозы и солей аммонию. Они называются прототрофами. Отдельные микроорганизмы (варианты прототрофов) потеряли способность к синтезу некоторых необходимых им ростовых факторов, следовательно не могут расти на минимальных питательных средах. Их называют ауксотрофными организмами.




Фототрофные бактерии способны использовать энергию солнечного света. Их иначе называют фотосинтезирующими бактериями. Патогенных для человека среди них нет. Другие прокариоты, которые получают энергию за счет окислительно- восстановительных реакций в субстратах, называются хемотрофами.


Для осуществления многообразных реакций клетке необходимые электроны. Вещества, которые в процессах биохимических превращений отдают электроны, называются донорами. Молекулы, которые получают электроны, называются акцепторами. Микроорганизмы, для которых источником электронов являются неорганические соединения типа Н2, Н2S NH3+, Fe +2 но другие, называются литотрофами (litos - камень). Другие бактерии, для которых донором электронов выступают органические вещества, называются органотрофами.


В зависимости от способа получения энергии, донора электронов и источника углерода для усвоения можно выделить 8 основных типов прокариотических организмов: фотолитоавтотрофы и фотолитогетеротрофы, фотоорганоавтотрофы и фотоорганогетеротрофы, хемолитоавтотрофы и хемолитогетеротрофы, хемоорганоавтотрофы и хемоорганогетеротрофы. Микроорганизмы, которые способны вызывать у человека заболевания, принадлежат к хемоорганогетеротрофам


Поступление веществ в клетку. Невзирая на достижение микробиологической науки в изучении процессов обмена в бактериальной клетке окончательно интимные механизмы транспорта питательных веществ в клетку и выведение метаболитов наружу не выяснены. Установлено, что микробам присущий голофитный тип питания, то есть они способны поглощать питательные вещества только в растворенном виде.


Однако некоторые субстраты не растворяются в воде (белки, полисахариды), или образуют коллоидные растворы, которые не проникают в клетку. В таком случае клеточные экзоферменты, которые выделяются в окружающую среду, вызывают гидролиз этих субстанций, расщепляя их к более простым и мелким молекулам и переводя в растворимое состояние.


Mеханизмы проникновения веществ Пассивная диффузия - градиент концентрации вещества внутри бактериальной клетки и внешне одинаков. Она происходит пассивно, потому что не требует затрат энергии. Облегченная диффузия осуществляется за счет особенных белков - пермеаз, которые содержатся в цитоплазматичний мембране. Этот процесс также не требует энергетического обеспечения.




Большинство питательных веществ, метаболитив, ионов проникают в клетку с помощью активного транспорта. Его также обеспечивают белки-пермеази, но они являются высокоспецифическими и способные переносить только определенные субстраты. Этот процесс происходит за счет энергии, которую генерирует клетка, потому возможный перенос и против градиента концентрации вещества.








Значение ферментов - Общебиологическое значение. - Участие бактерий в круговороте веществ в природе, формировании месторождений полезных ископаемых (нефть, уголь, залежи серы). - Микроорганизмы - прекрасные санитары окружающей среды. Они способны биодеградировать практически любые вещества, которые загрязняют окружающую среду. - Их широко используют в разных отраслях химической, пищевой, фармацевти- ческой, парфюмерной промышленности, сельском хозяйстве, медицине.


Протеазами удаляют волосяной покров из кожи животных, снимают желатиновый слой из кинопленки. Ферменты, которые обеспечивают брожение, используются для получения бутанола, ацетона, необходимых для проведения хроматографических исследований, этилового спирта, масляной кислоты. Кисломолочные продукты - кефир, йогурт, простокваша, кумыс - также продукты деятельности бактерий брожения.


Микроорганизмы используются в виноделии, производстве пива, при изготовлении вершкового масла, силосовании кормов, квашении овощей. Из дрожжей получают белково-кормовые добавки для выкармливания скота. Как питательную среду использует парафин - отходы нефти. - С помощью микроорганизмов и их ферментных систем в медицинской промышленности получают гормоны гидрокортизон, преднизолон, многообразные алкалоиды.


Пропионибактерии, актиномицеты синтезируют витамины (В12). Из стрептококков получен фибринолизин, стрептодорназу и стрептокиназу, которые разрушают тромбы в кровеносных сосудах. Поскольку способность образовывать ферменты определенной специфичности присущая всем микроорганизмам, это широко используется в лабораторной практике для идентификации бактерий.


Энергетический метаболизм прокариотов. За своим объемом реакции, которые обеспечивают клетку внутренней энергией, значительно превышают биосинтетические процессы. Микроорганизмы могут использовать не все формы энергии, которые существуют в природе. Они способны пользоваться только энергией солнечного света (фотосинтезирующие бактерии) и химической (хемотрофные микробы). Недоступные для них ядерная, механическая и тепловая энергии.


Явление нагромождения энергии рассматривается как перенос ионов водорода путем отдельного транспорта протонов и электронов: протоны при этом выделяются в окружающую среду, а электроны передаются на соответствующие молекулы- акцепторы. На протяжении своей эволюции бактерии произвели три способа получения энергии: брожение, дыхание и фотосинтез.




Основой фотосинтетических процессов у представителей микробного мира является поглощение солнечной энергии разными пигментами: флавопротеинами, хиноном, цитохромами и белками, которые содержат негеминовое железо. Они и обеспечивают перенос электронов и, соответственно, высвобождение энергии.




На примере E. coli определено, сколько необходимо энергии, чтобы синтезировался 1 г клеточного вещества. Это нуждается в 37 ммоль АТФ, из них 20 ммоль используется на синтез белка, 7 ммоль - на синтез ДНК и РНК, 2 ммоль - для полимеризации сахаров. Остальные идут на поддержку жизнедеятельности - осмос, движение клетки и тому подобное.


Дыхание бактерий. Это один из путей биологического окисления, который происходит с образованием молекул АТФ, то есть сопровождается нагроможде- нием энергии. Во время этого процесса одни вещества (органические и неорганические соединения) служат донорами электронов и при этом окисляются, акцепторами электронов выступают неорганические соединения, они возобновляются. У одних микроорганизмов конечным акцептором электронов выступает кислород, в других - неорганические сульфаты, нитраты, карбонаты.


Облигатные аэробы (возбудители туберкулеза, чумы, холеры) Облигатные аэробы (возбудители туберкулеза, чумы, холеры) Облигатные анаэробы (возбудители столбняка, ботулизма, газовой анаэробной инфекции, бактероиды, фузобактерии) Облигатные анаэробы (возбудители столбняка, ботулизма, газовой анаэробной инфекции, бактероиды, фузобактерии) Факультативные анаэробы (стафилококки, ешерихии, сальмонели, шигели и другие) Факультативные анаэробы (стафилококки, ешерихии, сальмонели, шигели и другие) Микроаэрофилы (молочнокислые, азотфиксирующие бактерии) Микроаэрофилы (молочнокислые, азотфиксирующие бактерии) Капнеичные (возбудитель бруцеллеза бычьего типа) Капнеичные (возбудитель бруцеллеза бычьего типа) Деление бактерий по типам дыхания


Под ростом понимают координированное воссоздание бактериальных структур и соответственно увеличение массы микробной клетки. Размножение - это способность микробов к самовоспроизведению, при этом увеличивается количество особей в популяции на единицу объема среды


Бактерии размножаются в геометрической прогрессии. Если считать, что при оптимальных условиях бактерия удваивается каждые 30 минут, то через час их будет 4, через два часа - 16, через, через 15 - миллионы. Через 35 год их объем будет составлять до 1000 м3, а масса - свыше 400 т.


Кривая, которая описывает зависимость логарифма числа живых клеток от времени культивирования, называется кривой роста Различают четыре основных фазы роста периодической культуры: начальную (или лаг-) фазу, экспоненциальную (или логарифмическую) фазу, стационарную и фазу отмирания




Начальная или фаза лага охватывает промежуток между инокуляцией бактерий и достижением наивысшей скорости их деления. В этот период происходит адаптация бактерий к условиям существования. В клетке в 8-12 раз растет количество РНК, увеличивается концентрация ферментов. Длительность фазы 1-2 год.


Экспоненциальная (логарифмическая) фаза характеризуется постоянной максимальной скоростью деления клеток и роста их количества в геометрической прогрессии. Она зависит от возраста микробов и состава среды. Да, энтеробактерии делятся каждые мин, стрептококки - 30 мин, а почвенные нитробактерии и возбудители туберкулеза час. Время, на протяжении которого происходит деление микроба, называется временами генерации. Длительность фазы час


Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Наступает равновесие между количеством живых микробов и тех, что отмирают. Этому способствует высокая плотность популяции, дефицит питательных веществ в среде, низкое парциальное давление кислорода, накопления токсичных продуктов обмена. Однако количество биомассы в этот период достигает наивысшего уровня, потому концентрацию клеток помечают как максимальную (М-) концентрацию, а величину биомассы - сроком выход или урожай. Этот признак является специфическим и характерным для каждого вида бактерий. Длится фаза 6- 7 год.




Во многих случаях необходимо поддерживать клетки в фазе экспоненциального роста и М-концентрации, потому что именно в этот период они наиболее физиологически и функционально активные: синтезируют много белка, продуцируют большое количество многообразных ферментов, токсинов, антибиотиков, других биологически активных веществ. Это достигается постоянным удалением популяций бактерий, которые растут, обновлением питательной среды, дополнительной аэрацией (для аэробных бактерий). Именно по таким принципам работают хемостаты и турбидостаты - приборы, которые позволяют проводить непрерывное культивирование в промышленных и лабораторных условиях.


Микроорга- Микроорга- низмы низмы Т е м п е р а т у р н ы й Т е м п е р а т у р н ы й оптиму м максимумминимум Термофилы С 75 С 45 С Мезофилы С С С Психрофил ы С С 0-5 С Деление микроорганизмов за температурным оптимумом


Требования к питательным средам 1. Обеспечения потребностей в азоте, углероды и водород для построения собственных белков. Водород и кислород для клеток поставляет вода. Источником азота выступают многочисленные вещества, в основном, животного происхождения (мясо говяжье, рыба, мясо-костная мука, казеин), а также белковые гидролизаты, пептиды, пептоны. 2. Ростовые факторы (витамины, ферменты). Универсальным источником их служат экстракты из белков животного и растительного происхождения, белковые гидролизаты. Для микробов с более сложными пищевыми потребностями в состав сред включают нативные субстраты - кровь, сыворотку, асцитическую жидкость, яичный желток, кусочки печенки, почек, мозговой ткани и др.


3. Среды должны быть сбалансированными за микроэлементным составом и содержать ионы железа, меди, марганца, цинка, кальция, натрия, калию, иметь в своем составе неорганические фосфаты. 4. Допустимым является употребление веществ, которые устраняют действие ингибиторов роста и токсинообразования микробов (отдельные аминокислоты, твин, активированный уголь и тому подобное). 5. Стабилизация оптимума рН среды, его высокой буферности. 6. Среды должны иметь определенную вязкость, густоту 7. Изотоничность, прозрачность, обязательно стерильность


П р о с т ые Сложные Жидкие: ПВ, МПБ Жидкие: ПВ, МПБ Специальные: сахарный МПА, МПБ, сывор. МПА, кровь. МПА, асцит. МПА Плотные: МПЖ, МПА Плотные: МПЖ, МПА Обогащение, накопление: селенит МПБ с-ща Мюллера, Кауффмана, Китт-Тароцци Элективные: Ру, 1% щелочная ПВ Элективные: Ру, 1% щелочная ПВ Дифференциально-диагностические: 1.для определения сахаролитичних свойств (с-ща Гиса, Эндо, Левина, Плоскирева (с-ща Гиса, Эндо, Левина, Плоскирева 2. для определения протеолитических свойств(свернутая сыворотка, МПЖ, кусочки мышц) 3.для определения пептолитичних свойств(МПБ, ПВ) 4. для определения гемолитических свойств (кровь. МПА 5. для определения редуцирующих свойств (среды с разными красителями) Классификация питательных сред Среды разделяются на естественные и искусственные. Как естественные используют свернутую сыворотку, молоко, яйца, мускульную ткань. Искусственные среды создают путем комбинирования многообразных субстратов, которые обеспечивают те или другие потребности микроорганизмов.


В зависимости от потребностей бактериологов существующие питательные среды разделяются на четыре основных группы Первая группа - универсальные (простые) среды. К ним принадлежат простые среды: мясо- пептонный бульйон (МПБ) и мясо-пептонный агар (МПА). За своим составом, наличием питательных веществ они пригодные для культивирования многих видов бактерий.




Третья группа - элективные среды. Их используют для целеустремленного выделения и накопления бактерий из материала, который содержит много посторонних микробов. Создавая такие среды, учитывают биологические особенности бактерий определенного вида, которые отличают их от других. Элективным для холерных вибрионов есть 1 % щелочная пептонная вода, среды Ру и Леффлера - для возбудителей дифтерии, среда Плоскирева - для дизентерийных палочек, среда Мюллера- для тифо- паратифозных бактерий. Красивый рост стафилококков наблюдается на средах, в составе которых есть до 10 % хлорида натрия. Микрококки и коринебактерии растут на агаре, что содержит фуразолидон.


Четвертая группа - дифференциально- диагностические среды. Это большая группа сред, которые позволяют определить определенные биохимические свойства микроорганизмов и проводить их первичную дифференциацию. Они разделяются на среды для определения протеолитических, пептолитических, цукролитических, гемолитических, липолитических, редуцирующих свойств и тому подобное.


1 - макро- и микроскопическое изучение исследуемого материала и занял на плотные питательные среды для получения отдельных колоний; 1 - макро- и микроскопическое изучение исследуемого материала и занял на плотные питательные среды для получения отдельных колоний; 2 - макро- и микроскопическое изучение колоний и пересевание на скошенный агар; 2 - макро- и микроскопическое изучение колоний и пересевание на скошенный агар; 3 - проверка чистоты выделенной культуры и ее идентификация; 3 - проверка чистоты выделенной культуры и ее идентификация; 4 - вывод о выделенной культуре. 4 - вывод о выделенной культуре. Этапы выделения чистых культур аэробных микроорганизмов:



Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам.

Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

На плотных питательных средах бактерии образуют скопления клеток – колонии, различные по размерам, форме, поверхности, окраске и т. д. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Фазы размножение бактериальной клетки на жидкой питательной среде:

1) начальная стационарная фаза; то количество бактерий, которое попало в питательную среду и в ней находится;

2) лаг-фаза (фаза покоя); продолжительность – 3–4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК;

3) фаза логарифмического размножения; активно идут процессы размножения клеток в популяции, размножение преобладает над гибелью;

4) максимальная стационарная фаза; бактерии достигают максимальной концентрации, т. е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит;

5) фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

2. Питание бактерий

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Среди необходимых питательных веществ выделяют органогены – это восемь химических элементов, концентрация которых в бактериальной клетке превосходит 10-4 моль. К ним относят углерод, кислород, водород, азот, фосфор, калий, магний, кальций.

Кроме органогенов, необходимы микроэлементы. Они обеспечивают активность ферментов. Это цинк, марганец, молибден, кобальт, медь, никель, вольфрам, натрий, хлор.

Для бактерий характерно многообразие источников получения питательных веществ.

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2);

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку.

1. Пассивный транспорт (без энергетических затрат):

1) простая диффузия;

2) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков).

2. Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

3. Метаболизм бактериальной клетки

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

Различают также:

1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

4. Виды пластического обмена

Основными видами пластического обмена являются:

1) белковый;

2) углеводный;

3) липидный;

4) нуклеиновый.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением.

В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов – брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный и др.). Они отличаются ключевыми продуктами и реакциями.

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот, т. е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требует кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зкависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Физиология изучает жизненные функции микроорганизмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм).

Сущность обмена веществ составляют два противоположных и вместе с тем взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм).

В процессе ассимиляции происходит усвоение питательных веществ и использование их для синтеза клеточных структур. При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. В результате распада питательных веществ происходит расщепление сложных органических соединений на более простые, низкомолекулярные. Часть из них выводится из клетки, а другие снова используются клеткой для биосинтетических реакций и включаются в процессы ассимиляции. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов.

Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количество питательных веществ, которое в 30-40 раз больше ее массы.

Химический состав бактерий

Для понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов.

Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей.

В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75-85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15-25%.

Вода . Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур.

Свободная вода принимает участие в химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий.

Белки (50-80% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки - протеины и сложные - протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды - соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды.

Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов).

Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ.

Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста.

Углеводы (12-18% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий.

Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития.

Липиды (0,2-40% сухого вещества) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ.

Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды.

В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов.

Минеральные вещества - фосфор, натрий, калий, магний, сера, железо, хлор и другие - в среднем составляют 2-14% сухого вещества.

Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий.

Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде.

Питание бактерий

Всем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества.

В качестве питательных веществ и источников энергии микроорганизмы используют различные органические и неорганические соединения, для нормальной жизнедеятельности им требуются также микроэлементы и факторы роста.

Процесс питания микроорганизмов имеет ряд особенностей: во-первых, поступление питательных веществ происходит через всю поверхность клетки; во-вторых, микробная клетка обладает исключительной быстротой метаболических реакций; в-третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания. Разнообразие условий существования микроорганизмов обусловливает различные типы питания.

Типы питания определяются по характеру усвоения углерода и азота. Источником других органогенов - водорода и кислорода служит вода. Вода необходима микроорганизмам и для растворения питательных веществ, так как они могут проникать в клетку только в растворенном виде.

По усвоению углерода микроорганизмы делят на два типа: автотрофы и гетеротрофы.

Автотрофы (от греч. autos - сам, trophe - питание) способны синтезировать сложные органические вещества из простых неорганических соединений. Они могут использовать в качестве источника углерода углекислоту и другие неорганические соединения углерода. Автотрофами являются многие почвенные бактерии (нитрифицирующие, серобактерии и др.).

Гетеротрофы (от греч. heteros - другой, trophe - питание) для своего роста и развития нуждаются в готовых органических соединениях. Они могут усваивать углерод из углеводов (чаще всего глюкозы), многоатомных спиртов, органических кислот, аминокислот и других органических веществ.

Сапрофиты (от греч. sapros - гнилой, phyton - растение) получают готовые органические соединения от отмерших организмов. Они играют важную роль в разложении мертвых органических остатков, например бактерии гниения и др.

По способности усваивать азот микроорганизмы делятся также на две группы: аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха (клубеньковые бактерии, азотобактер) или усваивают его из аммонийных солей. Аминогетеротрофы получают азот из органических соединений - аминокислот, сложных белков. К ним относят все патогенные микроорганизмы и большинство сапрофитов.

По источникам энергии среди микроорганизмов различают фототрофы, использующие для биосинтетических реакций энергию солнечного света (пурпурные серобактерии) и хемотрофы, которые получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенные для человека виды).

Однако резкой границы между типами питания микробов провести нельзя, так как есть такие виды микроорганизмов, которые могут переходить от гетеротрофного типа питания к автотрофному, и наоборот.

В настоящее время для характеристики типов питания введена новая терминология: гетеротрофы называют органотрофами, а автотрофы - литотрофами (от греч. litos - камень), так как подобные микроорганизмы способны расти в чисто минеральной среде.

Факторы роста . Микроорганизмы для своего роста и размножения нуждаются в особых веществах, которые сами синтезировать не могут и должны получать их в готовом виде. Эти вещества называют факторами роста, и нужны они микробным клеткам в небольших количествах. К ним относят различные витамины, некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биохимических процессах.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.

Транспорт питательных веществ . Питательные вещества могут проникать в цитоплазму микробных клеток только в виде небольших молекул и в растворенном виде.

Сложные органические вещества (белки, полисахариды и др.) предварительно подвергаются воздействию ферментов, выделяемых микробной клеткой, и после этого становятся доступными для использования. Транспорт питательных веществ в клетку и выход из нее продуктов метаболизма осуществляется в основном через цитоплазматическую мембрану.

Питательные вещества проникают в клетку несколькими способами:

1. Пассивная диффузия, т. е. перемещение веществ через толщу мембраны, в результате чего выравниваются концентрация веществ и осмотическое давление по обе стороны оболочки. Таким путем могут проникать питательные вещества, когда концентрация в среде значительно превышает концентрацию веществ в клетке.

2. Облегченная диффузия - проникновение питательных веществ в клетку с помощью активного переноса их особыми молекулами-переносчиками, называемыми пермеазами. Это вещества ферментной природы, которые локализованы на цитоплазматической мембране и обладают специфичностью. Каждая пермеаза адсорбирует соответствующее питательное вещество на наружной стороне цитоплазматической мембраны, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее транспортируемое вещество в цитоплазму. Этот процесс совершается без использования энергии, так как перемещение веществ происходит от более высокой концентрации к более низкой.

3. Активный транспорт питательных веществ осуществляется также с помощью пермеаз, но этот процесс требует затраты энергии. В этом случае питательное вещество может проникнуть в клетку, если концентрация его в клетке значительно превышает концентрацию в среде.

4. В ряде случаев транспортируемое вещество может подвергаться химической модификации, и такой способ переноса веществ получил название переноса радикалов или транслокации химических групп. По механизму передачи транспортируемого вещества этот процесс сходен с активным транспортом.

Выход веществ из микробной клетки осуществляется или в виде пассивной диффузии, или в процессе облегченной диффузии с участием пермеаз.

Ферменты и их роль в обмене веществ

Ферменты - это вещества белковой природы, вырабатываемые живой клеткой. Они являются биологическими катализаторами и играют важную роль в обмене веществ микроорганизмов.

По химическому строению, свойствам и механизму действия ферменты микробов сходны с ферментами, образующимися в клетках и тканях животных и растений. Ферменты микробной клетки локализуются в основном в цитоплазме, некоторые содержатся в ядре и клеточной оболочке. Микроорганизмы могут синтезировать самые разнообразные ферменты, относящиеся к шести известным классам: оксиредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы .

Характерным свойством ферментов является специфичность действия, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например, фермент лактаза расщепляет лактозу, мальтаза - мальтозу.

Активность ферментов зависит от температуры среды, рН и других факторов. Для многих патогенных микроорганизмов оптимальное значение рН 7,2-7,4, а оптимальная температура находится в пределах 37-50° С.

Ферменты микроорганизмов классифицируются на экзоферменты и эндоферменты. Экзоферменты, выделяясь во внешнюю среду, расщепляют макромолекулы питательных веществ до более простых соединений, которые могут быть усвоены микробной клеткой. Так, к экзоферментам относят гидролазы, вызывающие гидролиз белков, жиров, углеводов. В результате этих реакций белки расщепляются на аминокислоты и пептоны, жиры - на жирные кислоты и глицерин, углеводы (полисахариды)- на дисахариды и моносахариды. Распад белков вызывают ферменты протеазы, жиров - липазы, углеводов - карбогидразы. Эндоферменты участвуют в реакциях обмена веществ, происходящих внутри клетки.

У микроорганизмов различают также конститутивные и индуктивные ферменты. Конститутивные ферменты постоянно находятся в микробной клетке независимо от условий существования. Это в основном ферменты клеточного обмена: протеазы, липазы, карбогидразы и др. Индуктивные (адаптивные) ферменты синтезируются в клетке только под влиянием соответствующего субстрата, находящегося в питательной среде, и когда микроорганизм вынужден его усваивать. Например, если бактерии, не вырабатывающие в обычных условиях фермента амилазы, расщепляющей крахмал, засеять на питательную среду, где единственным источником углерода служит крахмал, то они начинают синтезировать этот фермент. Таким образом, индуктивные ферменты позволяют микробной клетке приспособиться к изменившимся условиям существования.

Наряду с ферментами обмена многие патогенные бактерии вырабатывают также ферменты агрессии, которые служат для преодоления естественных защитных барьеров макроорганизма и являются факторами патогенности. К таким ферментам относятся гиалуронидаза, дезоксирибонуклеаза, лецитовителлаза и др. Например, гиалуронидаза расщепляет межклеточное вещество соединительной ткани (гиалуроновую кислоту) и тем самым способствует распространению возбудителя в макроорганизме.

Выделение микроорганизмами различных ферментов определяет их биохимические свойства. Ферментный состав любого микроорганизма является достаточно постоянным признаком, а различные виды микроорганизмов довольно четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для дифференциации и идентификации различных микроорганизмов.

Практическое использование микробных ферментов . Издавна человек использовал ферментативную активность дрожжей в пивоварении и виноделии. Применение ферментов в пищевой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Ферменты, выделенные из определенных видов микроскопических грибов, используются в процессе изготовления пшеничного теста, что позволяет увеличить объем, пористость выпеченного хлеба, улучшить его свежесть, аромат, вкус. Ферментные препараты некоторых микроорганизмов применяют для ускорения процессов выделения соков из плодов и ягод.

С целью получения высококачественных кормов для сельскохозяйственных животных процессы микробного синтеза используются при силосовании зеленых трав; благодаря ферментативной активности дрожжей, размножающихся на отходах нефти (парафинах), получают белково-витаминные концентраты, которые являются ценным питательным веществом - их добавляют к грубым кормам для животных.

Ферменты позволяют некоторым микроорганизмам усваивать метан, и эти виды бактерий используют для борьбы с метаном в шахтах. Известно, что ферменты бактерий (в частности, сенной палочки) широко применяются в качестве биодобавок к стиральному порошку "Ока" и стиральной пасте "Био". Эти препараты удаляют белковые загрязнения, так как ферменты расщепляют белки до водорастворимых веществ, легко смываемых при стирке.

В медицинской промышленности с помощью ферментов микроорганизмов получают витамины, гормоны, алкалоиды.

Дыхание бактерий

Дыхание (или биологическое окисление) микроорганизмов представляет собой совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микробных клеток.

Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться при постоянном притоке энергии. Микроорганизмы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров и т. д. Сущность окисления состоит в том, что окисляемое вещество отдает электроны, а восстанавливаемое получает их.

По типу дыхания все микроорганизмы разделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные (необязательные) анаэробы.

Облигатные аэробы (микобактерии туберкулеза и др.) живут и развиваются при свободном доступе кислорода, т. е. реакции окисления осуществляются у них при участии молекулярного кислорода с высвобождением большого количества энергии. Примером может служить окисление глюкозы в аэробных условиях:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 2882,6 кД (688,5 ккал)

Существуют и микроаэрофилы, которые нуждаются в малых количествах кислорода (некоторые лептоспиры, бруцеллы).

Облигатные анаэробы (клостридии столбняка, ботулизма и др.) способны жить и размножаться только в отсутствие свободного кислорода воздуха. Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Так, при анаэробном разложении 1 моль глюкозы энергии выделяется значительно меньше, чем при аэробном дыхании:

С 6 Н 12 О 6 → 2С 2 Н 5 ОН + 2СО 2 + 130,6 кД (31,2 ккал)

Наличие свободного кислорода для облигатных анаэробов является губительным. Это связано с тем, что в присутствии кислорода конечным продуктом окисления органических соединений оказывается перекись водорода. А поскольку анаэробы не обладают способностью продуцировать фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на бактерии.

Факультативные анаэробы могут размножаться как при наличии молекулярного кислорода, так и при отсутствии его. К ним относят большинство патогенных и сапрофитных бактерий.

Процессы разложения органических веществ в бескислородных условиях, сопровождающиеся выделением энергии, называют также брожением. В зависимости от участия определенных микроорганизмов и конечных продуктов расщепления углеводов различают несколько типов брожения: спиртовое, осуществляемое дрожжами; молочно-кислое, вызываемое молочно-кислыми бактериями; масляно-кислое, обусловленное масляно-кислыми бактериями и др.

Выделение тепла при дыхании микроорганизмов можно наблюдать при выращивании культур в сосудах, защищенных от потери тепла, - температура питательной среды будет постепенно повышаться. С выделением избыточного тепла при дыхании некоторых микроорганизмов связаны процессы самовозгорания торфа, навоза, влажного сена и хлопка.

Биохимические механизмы дыхания более подробно изложены в учебниках биологической химии.

Пигменты микроорганизмов

Некоторые микроорганизмы (бактерии, грибы) в процессе обмена веществ образуют красящие вещества - пигменты. По химическому составу и свойствам пигменты неоднородны. Они подразделяются на растворимые в воде (синий пигмент - пиоцианин, выделяемый синегнойной палочкой); растворимые в спирте и нерастворимые в воде (красный пигмент - продигиозан, выделяемый чудесной палочкой); нерастворимые ни в воде, ни в спирте (черные и бурые пигменты дрожжей и плесеней).

Нерастворимые в воде пигменты (липохромы) обычно окрашивают колонии бактерий (например, желтый, золотистый, палевый пигменты стафилококков), а растворимые - окрашивают питательную среду (синегнойная палочка).

Образование пигментов у микробных клеток происходит на свету при достаточном доступе кислорода и определенном составе питательной среды.

Пигментообразование в ряде случаев является стойким признаком микроорганизмов, что позволяет использовать его в качестве теста для идентификации некоторых бактерий (например, стафилококки, синегнойная палочка).

Пигментообразование у микроорганизмов имеет определенное физиологическое значение. Пигменты защищают микробную клетку от природной ультрафиолетовой радиации, принимают участие в процессах дыхания, некоторые обладают антибиотическим действием (продигиозан).

Особый интерес представляет история чудесной палочки Serratia marcescens, которая образует на хлебе, картофеле и других продуктах, содержащих крахмал, красные колонии, похожие на капли свежей крови. Древнеримский историк Квинт Курций Руф в своей книге "История Александра Македонского" описал одну из его побед при покорении Малой Азии, связанную с этим удивительным микробом. В 332 г. до н. э. при осаде города Тироса в армии Александра Македонского произошло неприятное событие - в хлебе появились большие красные пятна, напоминающие пятна крови, и солдат охватил страх. Они посчитали это плохим предзнаменованием. Однако хитрый придворный мудрец Александра истолковал это "знамение" так: "Кровавые пятна действительно знак богов, но поскольку они находятся внутри запеченного хлеба, то это означает гибель войск, находящихся внутри осажденных стен города. Боги указывают на свою благосклонность войскам Александра и дают понять, что его победа обеспечена". Толкование мудреца так подняло дух армии, что солдаты с воодушевлением атаковали стены города и в скором времени захватили его.

Появление подобных красных пятен на продуктах во времена религиозных предрассудков и мракобесия средневековья широко использовалось церковниками для пропаганды "кары божьей" за неверие и служило основанием для жестокой расправы с вольнодумцами.

Светящиеся и ароматообразующие микроорганизмы

Среди микроорганизмов (бактерий, грибов) встречаются такие, которые обладают способностью светиться (люминесцировать). Свечение бактерий возникает в результате интенсивных процессов окисления,^сопровождающихся выделением энергии. Свечение морской воды, чешуи рыб, тела мелких ракообразных, сгнившего дерева объясняется присутствием на них светящихся бактерий или фотобактерий.

Все светящиеся бактерии относятся к аэробам. Большая часть их видов обитает в морской воде, так как они лучше размножаются при повышенной концентрации соли (галофильные микробы). Могут светиться пауки, муравьи, термиты, живущие в симбиозе с фотобактериями. Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Ночью светятся и грибы, например осенние опенки.

Светящиеся бактерии не вызывают процессов гниения, для большинства видов оптимальная температура жизнедеятельности - 15-18° С. Они хорошо растут на рыбных и мясных субстратах, что и обусловливает свечение мяса, рыбы.

В начале XX века пытались использовать светящиеся бактерии в практических целях, их предлагали применять для "безопасных ламп" в пороховых погребах.

Выявлены микроорганизмы, способные вырабатывать ароматические вещества, например уксусно-этиловый, уксусно-амиловый эфиры. Запахи некоторых микробов определяют ароматические свойства вин, молока, масла, сливок, сыров и т. д. Ароматообразующие бактерии широко используют при приготовлении различных пищевых продуктов.

Некоторые микроорганизмы в процессе жизнедеятельности образуют вещества с неприятным запахом (индол, скатол, сероводород), что связано с разложением органических веществ.

Рост и размножение бактерий

Одним из важнейших проявлений жизнедеятельности микроорганизмов являются рост и размножение их.

Рост определяется как увеличение размеров отдельной особи и упорядочное воспроизведение всех клеточных компонентов и структур.

Под размножением понимают способность микроорганизмов к самовоспроизведению, в результате чего увеличивается число особей в популяции. Основной способ размножения у бактерий поперечное деление. Перед делением у бактериальных клеток, достигших определенного возраста, происходит удвоение молекул ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой (рис. 9).

В образовании перегородки принимает участие цитоплазматическая мембрана и клеточная стенка. Если перегородка формируется в середине делящейся клетки, то появляются дочерние клетки одинаковой величины (изоморфное деление). Иногда перегородка образуется ближе к одному из концов, тогда дочерние клетки имеют неодинаковый размер (гетероморфное деление).

Деление бактерий (кокков) может происходить в различных плоскостях с образованием многообразных сочетаний клеток: цепочки стрептококков, парные соединения (диплококки), тетрады кокков, тюки (сарцина), гроздья (стафилококки). Палочковидные и извитые формы делятся поперечно и только в одной плоскости.

У некоторых бактерий размножение происходит путем образования почки (микобактерии туберкулеза, клубеньковые бактерии), которая по величине меньше исходной клетки.

Скорость размножения бактерий велика, что обусловлено интенсивностью их обмена. У большинства бактерий каждая клетка делится в течение 15-30 мин. Подсчитано, что за 24 ч у бактерий сменяется столько поколении, сколько у человека за 5000 лет. Есть виды бактерий, которые делятся медленно, 1 раз в сутки, например микобактерии туберкулеза.

Для каждого вида бактерий скорость размножения может быть различной и зависит от возраста культуры, питательной среды, температуры, значения рН и многих других факторов.

Размножение бактерий в жидкой питательной среде обладает рядом особенностей и происходит в несколько последовательных фаз (рис. 10).

Фаза 1 - исходная стационарная (латентная): микробные клетки адаптируются к питательной среде, при этом повышается интенсивность обменных процессов, увеличивается размер клеток. Бактерии начинают размножаться лишь к концу первой фазы.

Фаза 2 - логарифмического роста: бактерии энергично размножаются, вследствие чего количество клеток возрастает в геометрической прогрессии. В этой фазе бактерии обладают наибольшей биохимической и биологической активностью.

Фаза 3 - стационарная: концентрация бактериальных клеток в среде остается постоянной. Это обусловлено тем, что число вновь появившихся бактерий почти равно числу отмирающих клеток. Длительность этой фазы у разных бактерий различна.

Фаза 4 - отмирания: жизнеспособных клеток бактерий становится все меньше, и постепенно они погибают. Причинами гибели клеток могут быть истощение питательной среды, накопление в ней вредных продуктов обмена. В этой фазе у бактерий могут изменяться морфологические, биохимические и другие свойства. Фаза отмирания у различных видов бактерий неодинакова. Полная гибель культуры может наступить через несколько дней, недель или месяцев.

Увеличение количества размножившихся в жидких питательных средах бактерий можно наблюдать через 18-24 ч - появляется либо помутнение среды, либо образование пленки или осадка. При этом характер изменения среды зависит как от вида и возраста бактериальной культуры, так и от состава самой питательной среды.

При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Каждая колония - это популяция микроорганизмов, развившаяся из одной клетки определенного вида бактерии. Колонии бактерий различаются по размеру, форме, строению, консистенции и цвету. Внешний вид колоний у некоторых бактерий настолько характерен, что может служить дифференциальным признаком для идентификации микроорганизмов. Например, колонии возбудителя сибирской язвы можно сравнить с локонами или львиной гривой (см. рис. 47).

Спирохеты и риккетсии размножаются также поперечным делением. Процесс размножения (репродукция) вирусов (см. "Вирусы").

Контрольные вопросы

1. Каков химический состав микробной клетки?

2. Какие типы питания различают у микроорганизмов?

3. Как осуществляется транспорт питательных веществ в микробную клетку?

4. Как различаются микроорганизмы по типу дыхания?

5. Какими способами осуществляется размножение бактерий?

Будто вы шарите возможность наслушаться спариванием с притягательной индивидуалкой из вашего района, то благоволим вам взыскивать тактичных индивидуалок беспрепятственно на этом веб-ресурсе

Лекция № 7. Физиология микроорганизмов. Химический состав микроорганизмов. Питание микробной клетки. Гетеротрофный и автотрофный типы питания. Конструктивный и энергетический обмен. Рост и размножение микроорганизмов.

1 Физиология микроорганизмов.

Изучает процессы их роста, развития, питания, способы получения энергии для осуществления этих процессов, их взаимодействия с окружающей средой. Знание физиологических процессов микроорганизмов создает научную основу для проведения культивирования (выращивания) и идентификации (распознавания) видов микробов, а также получения биологических и лечебных препаратов (заквасок, витаминов, ферментов, аминокислот, антибиотиков, вакцин и др.).

Понятие об обмене веществ. Основу жизнедеятельности микроорганизмов, как и всех живых существ, составляет обмен веществ (метаболизм) с окружающей средой. Термин метаболизм объединяет два взаимосвязанных, но противоположных процесса - анаболизм и катаболизм.

Анаболизм (питание; ассимиляция; конструктивный или строительный обмен; обмен веществ) сводится к усвоению, т.е. использованию микробами питательных веществ, поступивших из внешней среды, для биосинтеза компонентов собственного тела. Это достигается чаще восстановительными эндотермическими реакциями, для течения которых требуется энергия.

Катаболизм (дыхание, диссимиляция, биологическое окисление) характеризуется расщеплением (окислением) сложных органических веществ до более простых продуктов с освобождением заключенных в них энергии. Эта энергия используется микроорганизмами для синтеза веществ данной клетки.

Метаболизм у микроорганизмов характеризуется интенсивным потреблением питательных веществ. Например, при благоприятных условиях в течение суток одна клетки бактерий усваивает веществ в 30-40 раз больше величины своей массы, соответственно высока и скорость прироста биомассы микроорганизмов. Основная часть пищи расходуется микроорганизмами в энергетическом обмене, при котором в среду выделяется большое количество продуктов обмена: кислот, спиртов, диоксид углерода, водород и др. Эта особенность микроорганизмов широко используется в практике переработки растительного, животного пищевого и непищевого сырья и обуславливает порчу пищевого сырья.

2 Химический состав микроорганизмов. Состав веществ тела микроорганизмов мало отличается от состава тела растений и животных.

Для определения потребностей микроорганизмов в питательных веществах необходимо знать их химический состав. Элементарный состав клеток микроорганизмов довольно разнообразен и представлен в процентах от сухого вещества клетки: углерод-50, кислород-20, азот-14, водород-8, фосфор-3, сера, калий, натрий- по 1, кальций, магний, хлор- по 0,5, железо-0,2, все остальные по 0,3. Эти элементы играют различную физиологическую роль. Так, углерод, кислород, азот и водород входят в состав всех без исключения живых организмов, их называют органогенами. Эти элементы составляют основу органических веществ; водород и кислород входят в состав воды; кислород необходим для дыхания аэробным микроорганизмам. Важную физиологическую функцию выполняют также фосфор и сера. Фосфор входит в состав важных органических соединений клетки - фосфолипидов, АТФ и др. Сера необходима для серосодержащих аминокислот (цистина, цистеина, гомоцистеина, метионина), без которых невозможен синтез белков.

Микробная клетка состоит из воды и сухих веществ. Количество воды для большинства микробов колеблется от 75 до 85% и находится в клетке в свободном и связанном состояниях, что имеет важное значение в жизни микроорганизмов, так как все вещества поступают в клетку только с водой и с ней же удаляются продукты обмена из клетки. Свободная вода служит дисперсной средой для коллоидов и растворителем различных органических и минеральных соединений. Связанная вода является структурным элементом цитоплазмы и не может быть растворителем. Содержание воды в клетке изменяется в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста и т.п. В спорах бактерий и грибов значительно меньше воды, чем в вегетативных клетках, за счет низкого содержания в них свободной воды. Потеря свободной воды влечет за собой высыхание клетки и изменения в обмене веществ. С потерей связанной воды нарушаются клеточные структуры и наступает гибель клетки.

Сухое вещество клеток микроорганизмов не превышает 15-25% и состоит преимущественно (до85-95%) из органических соединений- белков, углеводов, нуклеиновых кислот, липидов и других соединений.

Белковые вещества являются основными компонентами клетки. Содержание их зависит от вида микроорганизмов, условий выращивания и возраста и составляет в среднем от 40 до 60%. По аминокислотному составу белки микроорганизмов сходны с белками других организмов. Некоторые белки (ферменты) выполняют каталитические функции: осуществляют различные биохимические реакции, постоянно протекающие в микробной клетке).

Многие микроорганизмы могут накапливать большое количество белков в составе своих клеток и их можно рассматривать в качестве продуцентов пищевого и кормового белка. Рентабельность промышленного производства таких «белковых продуктов» определяется быстротой накопления биомассы микроорганизмов и использованием для их выращивания дешевого недефицитного сырья (отходов различных производств).

Углеводы составляют 15-20% сухого вещества и содержатся в микробных клетках в основном в виде полисахаридов. Углеводы входят в состав капсул. Клеточных мембран и цитоплазмы, а также являются запасными веществами в виде включений гранулезы и гликогена.

Нуклеиновые кислоты содержатся в клетках в виде рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. ДНК сосредоточена главным образом в ядре эукариотных клеток и в нуклеодах прокариотных (бактериальных клеток). В молекуле ДНК закодирована вся наследственная информация клетки, «записаны» все особенности будущего организма, выработанные в процессе длительной эволюции и свойственные данному виду. РНК преимущественно сосредоточена в цитоплазме и рибосомах.

Липиды составляют 3-10% сухого вещества, входят в состав клеточных оболочек и надежно защищают клетку от воздействий окружающей среды, а также откладываются в виде запасных гранул. Часть липидов связана с другими веществами клетки, образуя сложные комплексы (эфиры сложных кислот и углеводов, воски и фосфолипиды). Пигменты и красящие вещества обуславливают окраску микроорганизмов. Фотосинтезирующие бактерии содержат особые пигменты типа хлорофилла растений - бактериохлорофилл. Фототрофные бактерии и некоторые дрожжи образуют пигменты - каротиноиды, которые участвуют, как и бактериохлорофилл, в ассимиляции углекислого газа. У некоторых грибов (мицелиальных и дрожжевых) в значительных количествах образуются желто-розовые и оранжевые каротиноиды, которые являются провитаминами витамина А.

Минеральные вещества составляют 5-15% сухого вещества клетки и представлены сульфатами, фосфатами, карбонатами, хлоридами. Фосфаты могут быть в свободном виде и входить в состав различных соединений (нуклеиновых кислот, АДФ, АТФ). Минеральные соединения играют важную роль в регулировании внутриклеточного давления и коллоидного состояния цитоплазмы. Они влияют на скорость и направление биохимических реакций, являются стимуляторами роста, активаторами ферментов.

3 Питание микробной клетки. Анаболизм микроорганизмов. Питание-это процесс усвоения микробной клеткой питательных веществ, поступающих из окружающей среды, в результате которого они превращаются в составные части биологических структур клетки или откладываются в ней в виде запасов. Большинство микроорганизмов, также как и растения, обладают голофитным способом питания, или внеклеточным (внешним) пищеварением, которое происходит в окружающей среде (субстрате) под действием экзоферментов микроорганизмов.

Существует также голозойный способ питания (внутриклеточное пищеварение), которое происходит под действием эндоферментов. Оно присуще простейшим и некоторым низкоорганизованным организмам и характеризуется заглатыванием (обволакиванием) плотных частиц пищи, перевариванием и превращением их в растворимые соединения (эндоцитоз).

Возможность проникновения веществ извне в клетку обусловлено многими факторами: величиной и структурой их молекул; способностью растворяться в компонентах цитоплазматической мембраны; концентрацией веществ в клетке и в среде. Имеют значение также и свойства клеточной стенки и цитоплазматической мембраны, являющихся барьерами, через которые должны проникнуть в клетку питательные вещества; имеет значение электрический заряд поверхности клетки и др.

Вещества питательной среды могут поступать в клетку в растворенном состоянии. Нерастворимые сложные органические соединения должны подвергнуться расщеплению на более простые вне клетки, что происходит с помощью экзоферментов микроорганизмов.

Клеточная стенка проницаема и задерживает лишь макромолекулы. Цитоплазматическая мембрана обладает полупроницаемостью и служит осмотическим барьером, так как проницаемость ее для различных веществ неодинакова. Известно несколько путей проникновения питательных веществ в клетку.

Пассивная диффузия подчиняется законам осмоса. При осмотическом проникновении веществ через полупроницаемую мембрану движущей силой является разность осмотических давлений (концентраций веществ) в растворах по обе стороны мембраны, т.е. между средой и клеткой. При этом концентрация растворенных солей внутри клетки несколько выше (по сравнению с субстратом), а так как вода по закону осмоса стремится в сторону противоположной концентрации, то она поступает в клетку, увлекая с собой питательные вещества. Такой пассивный перенос веществ (по градиенту концентрации) протекает до выравнивания концентраций и не требует затраты энергии. При этом внутреннее напряжение клетки (так называемый тургор ) является одним из основных условий, обеспечивающих нормальное поступление в нее питательных веществ. Для большинства микроорганизмов тургор наиболее выражен при 0,85%-ной концентрации солей в окружающей среде. Эта концентрация называется изотонической.

При гипертонической концентрации, т.е. при повышении ее до 2-3%, наступает плазмолиз (обезвоживание) - сжатие, сморщивание цитоплазмы и отслаивание ее от клеточной стенки. При помещении микроорганизмов в гипотонический раствор (например, дистиллированная вода) – вода прямым потоком поступает внутрь клетки. Объем клетки при этом увеличивается, происходит набухание и разрушение оболочки клеток. Это явление получило название плазмоптиза .

Облегченная диффузия . Скорость транспорта веществ в клетку в условиях повышения концентрации субстрата возрастает до определенного предела. При облегченной диффузии кроме градиента концентрации функционируют электрические переносчики, находящиеся в мембране: субстрат соединяется с протоном и белком - переносчиком и по электрическому градиенту диффундирует в клетку. Переносчики являются специфичными по отношению к субстрату. Так, дрожжевые клетки поглощают сахара путем облегченной диффузии, а у анаэробов этим способом происходит поглощение некоторых соединений и выделение продуктов обмена.

Активный транспорт . Поступление питательных веществ осуществляется против градиента концентраций с затратами энергии со стороны клетки и при участии специфических белков-переносчиков (пермеаз), локализованных в цитоплазматической мембране. Пермеазы сходны с ферментами и обладают субстратной специфичностью - каждая транспортирует определенное вещество. На внешней стороне цитоплазматической мембране пермеаза адсорбирует вещество, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее в цитоплазму. Выход растворенных веществ осуществляется как при участии пермеаз - путем облегченной диффузии, так, видимо, и путем пассивной диффузии.

4 Конструктивный обмен. Пища должна содержать такие вещества, которые удовлетворяли бы потребность микроорганизмов в химических элементах и энергии, необходимых для синтеза веществ и структур клетки. В зависимости от того, какие химические элементы поступают из веществ питательной среды, их называют источниками углерода, азота, фосфора и др.

Кислород и водород микроорганизмы получают из воды, содержатся они также во многих используемых органических соединениях.

Потребности микроорганизмов в отношении источников углерода и азота весьма разнообразны.

Источники углерода. В зависимости от используемого в конструктивном обмене источника углерода микроорганизмы делят на две группы: автотрофы (питающийся самостоятельно) и гетеротрофы (питающийся другими).

Автотрофы усваивают углерод из диоксида углерода воздуха и в зависимости от вида используемой энергии для фиксации СО 2 их соответственно называют фото- и хемосинтезирующими.

Фотосинтезирующие используют энергию солнечных лучей. Они напоминают зеленые растения, образующие в процессе фотосинтеза углеводы из СО 2 и Н 2 О. К этой группе относят цветные бактерии, имеющие в цитоплазме своих клеток пигменты типа хлорофилла, как, например, пурпурные серные бактерии, сине-зеленые водоросли и др.

Хемоситезирующие используют энергию химических реакций окисления минеральных (неорганических) веществ. К ним относят нитрифицирующие бактерии, бесцветные серобактерии, железобактерии, нитчатые, тионовые, водородные бактерии и др.

Источники азота. В зависимости от источника азота все микроорганизмы можно разделить также на две группы: аминоавтотрофы и аминогетеротрофы.

Аминоавтотрофы усваивают азот из неорганических источников. Они представлены двумя подгруппами: азотфиксирующие и нитритно-нитратные микроорганизмы. Азотфиксирующая подгруппа способна усваивать молекулярный азот воздуха (актиномицеты, азотфиксирующие - свободноживущие и симбиотические). Нитритно - нитратные микроорганизмы окисляют аммиак до солей азотистой и азотной кислот и усваивают эти окисленные формы азота.

Аминогетеротрофы используют органические источники азота. К ним относятся дезаминирующие, пептонные, протеолитические и паротрофные микроорганизмы. Дезаминирующие микроорганизмы могут усваивать только аминокислоты (некоторые патогенные бактерии). Пептонные бактерии потребляют только органические соединения типа пептонов, так как не способны расщеплять цельную белковую молекулу (молочнокислые, пропионовокислые бактерии, энтерококки, микрококки и кишечные палочки). Протеолитические микроорганизмы или гнилостные в качестве источника азота используют натуральные белки, которые предварительно разлагаются их экзоферментами (гнилостные бактерии, актиномицеты, плесени). Паротрофные микроорганизмы в качестве источника азота используют белковые вещества живого организма (патогенные).

Установить резкую грань между автотрофами и гетеротрофами не всегда удается. Некоторые патогенные микроорганизмы во внешней среде ведут сапрофитный образ жизни, и наоборот, некоторые сапрофиты в зависимости от состояния микроорганизма могут вызвать заболевания.

Минеральные элементы. Микробная клетка нуждается в минеральных веществах. Потребность в них невелика, но без некоторых элементов невозможны рост и развитие микрооргнизмов. Калий активизирует ферментативные процессы, ускоряет течение физиологических процессов. Магний входит в состав хлорофилла у зеленых и пурпурных серобактерий, активизирует карбоксилазу, пептидазу и другие ферменты. Фосфор входит в состав нуклеиновых кислот, принимает активное участие в процессах дыхания (окисления). Сера – один из компонентов белков, входит в состав некоторых аминокислот. Железо необходимо в малых количествах, входит в состав дыхательных ферментов, ускоряет процессы окисления. Микроэлементы нужны микробной клетке еще в меньших количествах, но их недостаток ведет к нарушению нормального роста и развития. Молибден, бор, марганец, кобальт, медь и др. микроэлементы являются компонентами многих ферментов и витаминов. Для получения этих химических элементов в питательные среды для микроорганизмов вводят минеральные соединения.

Факторы роста . Активаторы биологических процессов по своему действию являются витаминами и витаминоподобными соединениями. Одни микроорганизмы должны получать витамины в готовом виде, а другие синтезируют витамины в количествах, значительно превышающих собственные потребности. На этом основан микробиологический путь получения рибофлавина (витамин В 2), каротиноидов (провитамин А), эргостерина (провитамин Д).

Культивирование микробов в условиях лабораторий осуществляется на искусственных питательных средах. Для гетеротрофов среды должны содержать экстракты из продуктов животного и растительного происхождения с добавлением пептона. Пептон - универсальный источник азота, являющийся продуктом неполного расщепления белков посредством фермента пепсина в кислой среде. В отличие от животных многие микробы могут использовать самые различные субстраты в качестве продуктов питания. Они растут на бумаге, дереве, коже, резине и т.д. Одни из них для своей жизнедеятельности используют парафиновые углеводороды, нефть, керосин; а другие - элективные (избирательные, селективные) среды, имеющие определенный состав.

5 Энергетический обмен. Описанные выше процессы конструктивного процесса – синтез веществ клетки из поступивших в нее извне питательных веществ, активный перенос этих веществ через цитоплазматическую мембрану и многие другие процессы жизнедеятельности - протекают с затратой энергии. Источники энергии у микроорганизмов разнообразны.

У фотоавтотрофов источником энергии служит видимый свет. Световая энергия улавливается фотоактивными пигментами клетки в процессе фотосинтеза, трансформируется в химическую энергию и обеспечивает энергетические потребности клетки.

Источником энергии у хемоавтотрофов служит химическая энергия, получаемая при окислении неорганических соединений (аммиак, сероводород и др.).

Хемогетеротрофы получают энергию в процессе окисления органических соединений. Любое природное органическое вещество и многие синтетические могут быть использованы хемогетеротрофами. Но одни способны окислять многие органические вещества, а другие - лишь небольшой набор их. Некоторые микроорганизмы могут проявлять большую специфичность к энергетическому материалу.

Поскольку все микроорганизмы - возбудители порчи пищевых продуктов и используемые при переработке пищевого сырья относятся к хемогетеротрофам, ниже рассматриваются именно их энергодающие процессы. К ним относят дыхание (1) и брожение(2). Суммарные уравнения выглядят следующим образом:

С 6 Н 12 О 6 +6 О 2 =6СО 2 +6Н 2 О+674 ккал,

С 6 Н 12 О 6 → 2СН 3 СН 2 ОН+2СО 2 +27 ккал.

Дыхание (биологическое окисление)- сложный процесс окисления различных органических соединений и некоторых минеральных соединений (нитратов и сульфатов). Нитратное дыхание - восстановление нитратов до молекулярного азота - происходят по схеме. Сульфатное дыхание - восстановление сульфатов до сероводорода, сопровождающееся выделением такого же количества энергии:

5С 6 Н 12 О 6 +24КNО 3 →24КНСО 3 +18Н 2 О+12N 2 +6СО 2 +270 ккал.

С 6 Н 12 O 6 +3К 2 SО 4 →3К 2 СО 3 +3СО 2 +3Н 2 О+3Н 2 S+270 ккал.

В итоге окислительно-восстановительных процессов и брожения образуется тепловая энергия, часть которой используется микробной клеткой, а остальное количество выделяется в окружающую среду. В настоящее время окисление определяют как процесс отнятия водорода (дегидрирование), а восстановление - его присоединение. Эти термины применяют к реакциям, связанным с переносом протонов и электронов, или только электронов. При окислении вещества происходит потеря электронов, а при восстановлении – их присоединение.

Различают два типа биологического окисления: прямое и непрямое. При прямом окислении органические вещества, такие как молекулярный водород, оксид углерода, метан, сера, аммиак, соли азотистой кислоты, железо и др. окисляются атмосферным кислородом с помощью ферментов оксидаз. При прямом окислении неорганических веществ получают энергию автотрофные почвенные бактерии.

При непрямом окислении происходит отщепление водорода от донора и его присоединение к акцептору. Поэтому непрямое окисление называют дегидрированием. Непрямому окислению путем дегидрирования подвергаются органические вещества при помощи дегидрогеназ. Различают аэробное и анаэробное дегидрирование. При аэробном дегидрировании микроорганизмы используют в качестве конечного акцептора водорода атмосферный кислород. Водород отщепляется от донора с помощью фермента дегидрогеназы и передается акцептору не сразу, а проходит ряд промежуточных этапов.

При аэробном дегидрировании происходит полное и неполное окисление. В случае полного окисления конечными продуктами являются вода и диоксид углерода, происходит высвобождение всей энергии. При неполном окислении освобождается лишь часть энергии. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и др., которые образуются плесневыми грибами. Также осуществляется аэробное дыхание уксуснокислыми бактериями:

СН 3 СН 2 ОН+О 2 →СН 3 СООН+Н 2 О+80 ккал

При анаэробном дегидрировании микробы используют в качестве акцептора водорода не кислород, а азот, серу, углерод и другие соединения, которые образуются при распаде субстрата (пировиноградной кислоты). При этом водород довольно легко соединяется с азотом, серой, углеродом, которые восстанавливаются до аммиака, сероводорода и метана.

Дегидрирование углеводов называют брожением, оно чаще проходит в анаэробных условиях. Конечными продуктами брожения являются органические кислоты, этиловый и бутиловый спирты, ацетон и другие продукты. Таким образом, прямое окисление и дегидрирование приводят к одному результату - окислению субстрата, т.е. отщеплению от субстрата водорода и присоединению его к акцептору (восстановление). Перенос электрона всегда сопровождается освобождением энергии, которая немедленно утилизируется клеткой с помощью особых соединений АТФ и АДФ (аденозинтрифосфата и аденозиндифосфата). В них она накапливается в органических фосфатных (макроэргических) связях и расходуется клеткой по мере необходимости.

По типу дыхания микроорганизмы разделяют на четыре основные группы: облигатные аэробы , облигатные и факультативные- анаэробы и микроаэрофиллы .

Облигатные (строгие) аэробы растут при свободном доступе кислорода воздуха, имеют ферменты, обеспечивающие передачу водорода от донора электронов (субстрата) конечному акцептору - кислороду воздуха. Размножаются при наличии в атмосфере до 21% кислорода, на питательных средах растут на верхних слоях (уксуснокислые бактерии, возбудитель туберкулеза, пигментные гнилостные бактерии, многие плесени и др. микроорганизмы).

Облигатные анаэробы способны к размножению только в атмосфере, свободной от кислорода, или при его содержании не более 5%. У этих микроорганизмов конечным акцептором водорода является субстрат (азотсодержащие вещества, углеводы и др.). Эти микробы растут на дне пробирке под значительным слоем питательной среды. В эту группу входят маслянокислые и пропионовокислые бактерии, гнилостные клостридии, возбудитель ботулизма, бифидобактерии и др. Для некоторых строгих анаэробов кислород является ядом.

Факультативные анаэробы развиваются как при доступе кислорода, так и в его отсутствии. Они имеют набор ферментов, обеспечивающих аэробный и анаэробный тип биологического окисления (дыхания). Развиваются по всей толщине питательной среды. Это многочисленная группа микроорганизмов, к которым относятся молочнокислые бактерии, стафилококки, бактерии группы кишечной палочки, гнилостные бактерии рода Протеус.

Микроаэрофиллы нуждаются в значительно меньшем количестве кислорода, чем аэробы. Они развиваются при концентрации кислорода в окружающей среде не более 10%, т.е. у них преобладает аэробный тип дыхания (актиномицеты, лептоспиры, возбудители бруцеллеза, некоторые плесневые грибы).

Классификация по типам питания . При классификации по типам питания на первое место ставится вид используемой энергии, в соответствии с этим микроорганизмы делят на фототрофы и хемотрофы. Каждую из этих групп в зависимости от окисляемого вещества в свою очередь делят на литотрофы(лито-минерал, камень) и органотротрофы:

1.Фототрофы 2. Хемотрофы

1.1. Фотолитотрофы 2.1. Хемолитотрофы

1.2. Фотоорганотрофы 2.2. Хемоорганотрофы.

7 Рост и размножение микроорганизмов.

Сложные процессы метаболизма, происходящие в клетке, отражаются такими явлениями как рост и размножение микроорганизмов. «Рост» означает увеличение массы клеток в результате синтеза клеточного материала. Интенсивность роста микроорганизмов можно определить делением их массы на численность особей в единице объема в отдельные промежутки времени. Рост индивидуальной клетки заканчивается размножением.

Под размножением микробов подразумевают способность их к самовоспроизведению, т.е. увеличению количества особей микробной популяции на единицу объема. Микроорганизмы характеризуются высокими темпами размножения: у бактерий -20 мин.; у дрожжей-30 - 90 мин.; у мицелиальных грибов - 5-6 часов. Однако в действительности такого быстрого размножения микробов не происходит, т. к. продолжительность периода размножения зависит от вида микроорганизма, возраста, характера среды, условий культивирования (температура, рН, накопившиеся метаболиты и др.).

Размножение микроорганизмов в ограниченном объеме жидкой питательной среды (в пробирке, колбе) происходит в определенной закономерности и представлено на рис. Эта кривая косвенно характеризует также и отмирание клеток, параллельно идущее с размножением клеток. На кривой размножения различают четыре основные последовательные фазы роста культуры:

Начальная фаза-лаг-фаза (фаза задержки роста);

Логарифмическая фаза - лаг-фаза;

Стационарная фаза;

Фаза отмирания.

Лаг-фаза - период задержки роста микроорганизмов, в течение которого внесенные в питательную среду микробы адаптируются к питательной среде и начинают размножаться с нарастающей скоростью. Продолжительность лаг-фазы составляет 1-4 часа и зависит от видовых особенностей микроорганизмов, количества засеваемого материала, питательных веществ и др. В этой фазе размеры клеток в три-пять раз больше обычных, имеют большую биохимическую и энергетическую активность и отличаются повышенной чувствительностью к различным бактерицидным факторам.

Логарифмическая фаза характеризуется быстрым и постоянным размножением микробов. Количество клеток увеличивается в геометрической прогрессии. В этот период морфологические свойства типичны для данного вида, вся популяция однородна, устойчивость клеток к неблагоприятным факторам возрастает. Продолжительность этой фазы 5-8 часов. Для длительного нахождения микроорганизмов в этой фазе (в так называемой непрерывной культуре) в сосуд непрерывно вводят новые порции питательной среды и одновременно удаляют из него соответствующее количество микробной суспензии вместе с продуктами метаболизма.

Стационарная фаза завершает период роста культуры и продолжается 4-5 часов. Она характеризуется сбалансированным размножением и отмиранием микроорганизмов. Отмирание микроорганизмов происходит в результате истощения питательной среды и накопления продуктов обмена. В этой стадии наряду с типичными клетками встречаются дегенеративные и инволюционные формы.

Фаза отмирания (старение культуры) характеризуется массовой гибелью клеток, т.е. гибелью с постоянной скоростью через равные промежутки времени. Причиной отмирания клеток является изменение физико-химических свойств среды и лизис клеток под действием собственных ферментов. Микробы могут утрачивать подвижность, способность воспринимать окраску, у споровых видов наряду с отмиранием вегетативных клеток происходит образование спор, меняется биохимическая активность и т.д. Продолжительность фазы может составлять от 7-10 до 30 суток.

Описанные закономерности развития популяции будут правильными при выращивании в оптимальных условиях (состав среды, рН, температура).

Рост микроорганизмов в жидкой питательной среде может проявляться помутнением и изменением цвета среды, наличием или отсутствием пристеночного кольца и поверхностной пленки различного характера, наличием или отсутствием осадка.

При размножении на плотных питательных средах микроорганизмы образуют колонии, которые представляют собой видимые скопления особей одного вида и формирующиеся в результате размножения, как правило, одной клетки. Они бывают круглой, розеткообразной, звездчатой, древовидной формы. Могут иметь поверхность гладкую, пушистую, выпуклую, плоскую, куполообразную, вдавленную. Строение края колонии может быть ровным (S-форма) и шероховатым (R-форма). Различают колонии по величине диаметра: мелкие - 1-2 мм, средние 2-4 мм, крупные - свыше 4 мм. Колонии отличаются также по консистенции, плотности, прозрачности и цвету.

Различные виды микроорганизмов образуют специфические колонии на плотных питательных средах и дают характерный рост на жидких средах. Особенности роста микробов на питательных средах называют культуральными свойствами